
International Journal of Digital Twin Systems and Computing (IJDTSC)            ISSN:(3108-0790) 
Doi: https://doi.org/10.XXXXX/IJDTSC.2025.V1204   

  

 

VOLUME 1 ISSUE 2 OCT-NOV 2025                                                                                                                                                                     20                                                                                                                              

 

Digital Twin Driven Fault Detection in Embedded 
Control Systems Using Real-Time Sensor Fusion 

1Satyam Kumar 
1National Institute of Technology, Silchar 

1Email id. Satyam_pg_25@ee.nits.ac.in 
 

Abstract—The growing sophistication of embedded control systems in contemporary electronic and 
cyber-physical systems requires a stable and smart fault detection system to guarantee safety in 
operations and system reliability. A digital twin-driven fault detection system in embedded control 
systems is presented in this paper based on real-time sensor fusion. The proposed method combines 
a high-fidelity digital twin that constantly reflects the dynamic behaviour of the physical system with 
multi-sensor data taken in real time. The digital twin allows the accurate state estimation and early 
fault detection of the heterogeneous sensor signals including voltage, current, temperature, and 
vibration by the fusion of sensor signals in different operating conditions. A hybrid approach to fault 
detection with a model-based and data-driven approach to anomaly detection is used to differentiate 
between normal operational deviations and incipient faults. Active synchronisation between the 
physical system and its digital counterpart means that it is possible to perform adaptive thresholding 
and robust fault isolation in the presence of sensor noise and environmental uncertainties. The 
framework runs on a built-in platform, reflecting minimal computational costs and real-time 
capability. The experimental data verify that the suggested technique is much more effective than the 
traditional single-sensor and non twin based methods of fault detection and false alarms, as well as 
fault response time. The introduced digital twin-based architecture is a scalable and intelligent design 
of health monitoring and fault diagnosis of embedded control systems, which is applicable to power 
electronics, industrial automation, and smart cyber-physical systems. 
Keywords—: Digital Twin, Embedded Control Systems, Fault Detection, Real-Time Sensor Fusion, Anomaly Detection, 
Cyber–Physical Systems, Condition Monitoring, Intelligent Diagnostics. 
 

I. INTRODUCTION 
Embedded control systems form the backbone of 
contemporary electronic, industrial, and cyber-physical 
designs such as power electronics, automation in 
industries, smart factories, and autonomous systems. 
These systems are very rigidly timed to run in real-time 
and are used in safety critical scenarios where a failure 
can result in a drop in performance, equipment damage 
or doom and gloom failure. This has in turn led to the need 
to have reliable fault detection and diagnostics so as to 
have operational safety, system reliability and a low cost 
of maintenance[1]. The traditional methods of fault 
detection in embedded systems are mainly threshold-
based fault monitoring or single sensor inspection or 
periodical offline testing. Although these methods are 
computationally easy, they usually do not provide high 
fault observability, have large false alarm, and cannot 
sense latent or transient faults. Furthermore, the growing 
adoption of non-homogeneous sensors and 
sophisticated control algorithms creates nonlinear 

dynamics and uncertainty whereby traditional model-
based methods are no longer adequate in robust real-
time fault detection[2]. There has been recent 
development in cyber-physical systems and Industry 4.0 
that has resulted in the definition of the digital twin 
concept which offers a virtual replica of physical system 
that self-evolves alongside its real-life counterpart [3]. A 
digital twin constantly absorbs real-time information 
about the physical system and allows estimating the 
truth about the state, predicting it, and making smart 
decisions. Digital twins are a promising solution in online 
monitoring and in fault diagnosis in embedded control 
applications that combine physics-based models with 
real-time data concerning their operation. 
Simultaneously, real-time sensor fusion has received a 
great deal of interest because an effective approach to 
observeable system and improve the accuracy of fault 
detection[4]. Sensor fusion addresses the drawbacks of 
single sensors by combining information of several non-
homogeneous sensors such as electrical, thermal 
sensors and mechanical sensors to enhance the 
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reliability of sensors and reduce the impact of noise, 
sensor degradation, and environmental perturbations. 
Nonetheless, the current sensor fusion-based fault 
detection techniques do not provide a single framework 
which can dynamically adjust to system dynamics. 
In response to these difficulties, the present paper 
suggests a fault detection system based on digital twins 
and embedded control systems based on real-time 
sensor fusion[5]. The suggested solution is a high-fidelity 
digital twin combined with a multi-sensor data stream to 
monitor the behavior of a system continuously and 
produce residuals to detect faults. The hybrid approach 
based on model-based residual evaluation and data-
driven anomaly detection is used to detect faults in 
various operating conditions and isolate them correctly. 
The architecture is optimized to be executed in real-time 
on embedded platforms and is efficient in its 
computations and scaling [6]. 

 
Fig. 1. Digital twin architecture Conceptual architecture 
of the digital twin-based fault detection system 
combining real-time sensor fusion, embedded control 
and hybrid fault diagnostics. 
Figure 1 explains the proposed digital twin-based fault 
detection system of embedded control systems. The 
architecture comprises a closely-linked interaction 
between the physical embedded system and its digital 
twin counterpart supported by real-time data acquisition 
and sensor fusion. The physical system comprises an 
embedded controller, actuators and several 
heterogeneous sensors to measure electrical, thermal 
and operational conditions and voltage, current, 
temperature, and vibration[7]. A data acquisition and 
communication layer sends these real-time sensor 
signals to the digital twin. The digital twin is an advanced 
simulated version of the physical system, with physics-
based models and the real-time states of the system[8]. 
A sensor fusion module combines and processes multi-
sensor data to enhance accuracy and resistance to noise 
and sensor uncertainty of state estimation. The 
integrated information is constantly connected to the 
digital twin so that physical and virtual space correspond 
to each other in real-time. 

The work of a hybrid fault detection unit is implemented 
in the digital twin environment, in which model-based 
residual generation and data-driven anomaly detection 
methods are combined. The differences between the 
twin behavior prediction and the measured behavior in 
the system are used to determine the incipient, 
intermittent or sudden faults. Once faults have been 
identified, diagnostic data are received back to the 
embedded controller to fault isolate, mitigate or 
reconfigure the control. 
This closed-loop digital twin architecture can provide 
early diagnostics, adaptive thresholding, and intelligent 
diagnostics, therefore it can be used in real-time 
embedded control in power electronics, industrial 
automation, and cyber-physical systems.. 
 

II. SYSTEM DESCRIPTION 

A. Physical Embedded Control System Description 

The considered system is a closed-loop embedded 
control system consisting of a plant, an embedded 
controller, actuators, and multiple heterogeneous 
sensors. The system operates in real time and is subject 
to uncertainties, disturbances, and potential faults 
affecting sensors, actuators, or system components. 
Let the continuous-time nonlinear dynamics of the 
physical system be expressed as: 

𝐱̇(𝑡) = 𝐟(𝐱(𝑡), 𝐮(𝑡), 𝐝(𝑡)) 
𝐲(𝑡) = 𝐡(𝐱(𝑡)) + 𝐧(𝑡)(1) 

 
where: 

• 𝐱(𝑡) ∈ ℝ𝑛is the system state vector, 
• 𝐮(𝑡) ∈ ℝ𝑚 is the control input generated by the 

embedded controller, 
• 𝐝(𝑡) represents external disturbances and 

uncertainties, 
• 𝐲(𝑡) ∈ ℝ𝑝is the measured output vector, 
• 𝐧(𝑡)denotes measurement noise, 
• 𝐟(⋅) and 𝐡(⋅) are nonlinear system and 

measurement functions[9]. 

B. Sensor-Level Measurement Model 
The embedded system is equipped with multiple sensors 
measuring electrical, thermal, and mechanical 
parameters such as voltage, current, temperature, and 
vibration. The measurement from the 𝑖𝑡ℎ sensor is 
modeled as: 

𝑦𝑖(𝑡) = ℎ𝑖(𝐱(𝑡)) + 𝑛𝑖(𝑡) + 𝑓𝑖(𝑡)(2) 
 
where: 

• ℎ𝑖(⋅)is the sensor measurement function, 
• 𝑛𝑖(𝑡)is sensor noise, 
• 𝑓𝑖(𝑡)represents sensor fault or bias. 

Collectively, the multi-sensor measurement vector is 
given by: 

𝐲𝑠(𝑡) = 𝐇𝐱(𝑡) + 𝐧𝑠(𝑡) + 𝐟𝑠(𝑡)(3) 
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C. Real-Time Sensor Fusion Model 

To improve observability and robustness, real-time 
sensor fusion is employed. The fused state estimate 
𝐱̂(t)is obtained using a weighted fusion scheme: 

𝐱̂(t) =∑wi

N

i=1

𝐱̂i(t)(4) 

 

subject to: 

∑wi

N

i=1

= 1,wi ≥ 0(5) 

 

where: 

• 𝐱̂i(t)is the state estimate from the ithsensor, 

• wi denotes the confidence weight assigned to 
each sensor. 

The weights are adaptively adjusted based on noise 
variance and sensor reliability, enhancing fault 
tolerance[10]. 

D. Digital Twin Mathematical Model 
The digital twin is a high-fidelity virtual replica of the 
physical system that evolves synchronously with real-
time data. Its dynamics are described as: 

𝐱̇𝑑𝑡(𝑡) = 𝐟𝑑𝑡(𝐱𝑑𝑡(𝑡), 𝐮(𝑡)) 
𝐲𝑑𝑡(𝑡) = 𝐡𝑑𝑡(𝐱𝑑𝑡(𝑡))(6) 

 
where: 

• 𝐱𝑑𝑡(𝑡)represents the digital twin state vector, 
• 𝐟𝑑𝑡(⋅) and 𝐡𝑑𝑡(⋅) are the twin’s physics-based 

models. 
Real-time synchronization between the physical system 
and digital twin is enforced using sensor-fused state 
updates: 

𝐱𝑑𝑡(𝑡) ← 𝐱̂(𝑡)(7) 
 
E. Residual Generation for Fault Detection 
Fault detection is achieved by computing residuals 
between physical system measurements and digital 
twin predictions: 

𝐫(𝑡) = 𝐲𝑠(𝑡) − 𝐲𝑑𝑡(𝑡)(8) 
 
Under normal operating conditions: 

∥ 𝐫(𝑡) ∥≤ 𝛿(9) 
where 𝛿is an adaptive threshold. A fault is declared 
when: 

∥ 𝒓(𝑡) ∥> 𝛿(9) 

III. LITERATURE SURVEY 

The flagrant increase in Digital Twin (DT) technology has 
led to the development of great interest in applying this 
technology to fault detection and diagnostics of various 
industries, such as industrial systems, aerospace, 
embedded platforms, etc. Digital twins offer a virtual 
representation of a real-life system that constantly aligns 
with real-life data to provide greater monitoring, 
predictive analysis, and decision support. 
Digital Twin-based Hybrid Fault Diagnosis: 
Recent studies focus on consolidated methods of 
diagnosing sensor and actuator failures in digital twin 
structures. As an illustration, a hybrid algorithm that 
utilizes adaptive KF has been to identify various faults, 
such as drift, bias, and freeze faults, in a digital twin to 
execute remote operations of surface vessels 
demonstrating strong detection under uncertainties and 
different fault conditions. This article shows the 
possibility of combining model-based filtering with data-
driven analysis to increase the quality of the diagnostic of 
mission-critical CPS applications[11].  
Multimodal Data Fusion: Fault Detection: In the aero-
engine fault diagnosis, scholars have come up with digital 
twin techniques that incorporate deep multimodal 
information fusion involving physics-based models 
alongside data-driven features through deep Boltzmann 
machines. The method combines heterogeneous sensor 
and simulation data into a combined high dimensional 
model which enhances fault detection and adaptive 
model correction during engine degradation conditions.  
Digital Twin in the factory and system monitoring: DTs 
have application beyond large mechanical systems, 
multisensor fusion digital twins have been applied 
successfully to additive manufacturing to correct defects 
by synchronizing the spatiotemporal data of the acoustic, 
thermal, and vision sensors, and they are more effective 
than single-sensor monitoring.  
IoT-Integrated and embedded DT Systems: Other new 
work on fault-tolerant IoT and embedded systems uses 
software-defined digital twins to replicate individual 
sensor capabilities to allow continued functioning during 
sensor failure. Tripled IoT systems Digital twins at the 
device level achieve fault tolerance, which is 
demonstrated by the cost-efficient nature of digital 
replicas, and do not increase the cost of the system.  
Fault Data Generation and Learning DTs: The other 
significant addition to the literature is the training of data-
driven models using a digital twin in case the real failures 
data are scarce. When fault conditions are simulated 
with the help of DTs, deep learning fault classifiers can be 
trained with fewer examples of physical failures and 
effectively diagnose only as demonstrated on robotic 
systems.  
Industry, Cross-Disciplinary Reviews: 
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The systematic reviews of the areas of building 
operations and industrial safety point to the growing pace 
of the adoption of digital twins in fault detection. These 
reviews highlight issues in model fidelity, data 
combination and hybrid diagnostic methods which 
integrate physics with learning based methods. Ideally, a 
review of the DT fault detection approaches in smart 
buildings shows that there is an increase in research 
areas, but better algorithm integration and real-time 
operations are still necessary[12]. 

Approach / 
Parameter 

Digit
al 
Twin 

Real-
Time 
Capabili
ty 

Sens
or 
Fusio
n 

Embedd
ed 
Suitabilit
y 

Convention
al Methods ✘ ✔ ✘ ✔ 

Model-
Based 
Methods 

✘ ✔ ✘ ✔ 

Data-
Driven 
Methods 

✘ ✘ ✘ ✘ 

Digital 
Twin–
Based 
Methods 

✔ ✘ ✘ ✘ 

Proposed 
Method ✔ ✔ ✔ ✔ 

Table.1 Value Reduced Comparison of Fault Detection 
Methods in Compact Parameters. 
A brief, parameter-related comparison of the 
representative fault detection methods available in the 
literature with the suggested digital twin-driven concept 
is provided in Table X. A comparison is made based on the 
four main parameters of evaluation, including a digital 
twin integration, real time operational capability, sensor 
fusion, and embedded system suitability. 
Both conventional and model-based approaches show 
the feasibility in real time, but do not provide the 
representation of a digital twin and the integration of 
multi-sensors, which restricts their possibilities to 
identify incipient faults in the conditions of complex 
operation. Data-driven methods can provide better fault 
classification performance, but they typically need a 
large amount of training data and compute time and real-
time embedded systems can be difficult to implement. 

IV. METHODOLOGY 

The proposed methodology employs a digital twin–
driven framework integrated with real-time sensor 
fusion to achieve accurate and reliable fault detection in 
embedded control systems. The overall methodology 
consists of data acquisition, sensor fusion, digital twin 
synchronization, residual generation, anomaly detection, 
and fault decision-making. 

A. Real-Time Data Acquisition 
The physical embedded system is continuously 
monitored using multiple heterogeneous sensors. The 
discrete-time sensor measurement at sampling instant 
𝑘is given by: 

𝐲𝑠(𝑘) = 𝐇𝐱(𝑘) + 𝐧(𝑘) + 𝐟(𝑘)(10) 
 
where 𝐱(𝑘) is the system state vector, 𝐧(𝑘) represents 
measurement noise, and 𝐟(𝑘) denotes fault-induced 
deviations. 
B. Multi-Sensor Fusion for State Estimation 
To enhance robustness and observability, sensor fusion 
is employed to obtain a reliable state estimate. The fused 
state estimate is computed as: 

𝐱̂(𝑘) = ∑𝑤𝑖

𝑁

𝑖=1

(𝑘)𝐱̂𝑖(𝑘)(11) 

subject to: 

∑𝑤𝑖

𝑁

𝑖=1

(𝑘) = 1,𝑤𝑖(𝑘) ≥ 0(12) 

where 𝐱̂𝑖(𝑘)is the state estimate from the 𝑖𝑡ℎsensor and 
𝑤𝑖(𝑘)is its adaptive confidence weight. 

C. Digital Twin State Synchronization 

The digital twin is modeled as a discrete-time virtual 
replica of the physical system: 

𝐱𝑑𝑡(𝑘 + 1) = 𝐟𝑑𝑡(𝐱𝑑𝑡(𝑘), 𝐮(𝑘))(13) 
Real-time synchronization between the physical system 
and the digital twin is enforced by updating the twin state 
using the fused estimate: 

𝐱𝑑𝑡(𝑘) ← 𝐱̂(𝑘)(14) 
This ensures that the digital twin accurately reflects real 
system dynamics.Residuals are generated by comparing 
the sensor measurements with digital twin predictions: 

𝐫(𝑘) = 𝐲𝑠(𝑘) − 𝐲𝑑𝑡(𝑘)(15) 
where 𝐲𝑑𝑡(𝑘) = 𝐡𝑑𝑡(𝐱𝑑𝑡(𝑘)). 

Under normal operation: 

∥ 𝐫(𝑘) ∥≤ 𝛿(𝑘)(16) 
A fault is indicated when: 

∥ 𝐫(𝑘) ∥> 𝛿(𝑘)(17) 
where 𝛿(𝑘)is an adaptive threshold. 

To improve sensitivity to incipient faults, a data-driven 
anomaly detection model is employed. The anomaly 
score is computed as: 

𝐴(𝑘) = ℱ(𝐫(𝑘), 𝐱̂(𝑘))(18) 
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where ℱ(⋅) represents a trained statistical or machine 
learning function.A fault condition is confirmed when: 

𝐴(𝑘) > 𝐴th(19) 
he final fault decision is made using a hybrid logic: 

Fault(𝑘) = {
1, ∥ 𝐫(𝑘) ∥> 𝛿(𝑘) and 𝐴(𝑘) > 𝐴th
0, otherwise

 

Detected faults are further classified based on residual 
patterns and sensor contributions. Upon fault detection, 
diagnostic information is fed back to the embedded 
controller for mitigation or reconfiguration: 

𝐮(𝑘) = 𝐊(𝐱̂(𝑘),Fault(𝑘))(20) 
This closed-loop mechanism enhances system 
resilience and operational continuity. 

V. RESULTS 

 
Fig. 2: Digital Twin versus Fused Sensor Output. 
The above figure depicts the dynamic response of the 
system by comparing the Digital Twin output (red dashed 
line) and the fused sensor output (blue solid line) during 
0-10 s time span. At the beginning, both signals are 
characterized by a high rate of growth and stabilize at a 
steady-state level of about 1.0, and this shows a strong 
agreement in the normal working environment. At 
approximately 6 s, a step change is brought into the 
system whereby the system output changes to a new 
steady-state value close to 1.2. The digital twin closely 
follows the fused sensor measures at both the transient 
and steady-state stages with the slight variations 
occurring due to noise effects. This good correlation 
shows that the digital twin model succeeds in modeling 
real-time system behavior and assessing sensor fusion 
quality. 

Parameter 
Fused Sensor 
Output 

Digital Twin 
Output 

Initial Rise Time Fast (0–0.5 s) Fast (0–0.5 s) 
Steady-State 
Value (0–6 s) 

≈ 1.0 ≈ 1.0 

Noise Level 
Low 
(measurement 
noise present) 

Very low 

Step Change 
Instant 

~6 s ~6 s 

Post-Step 
Steady-State 
Value 

≈ 1.2 ≈ 1.2 

Transient 
Overshoot 

Negligible Negligible 

Tracking 
Accuracy 

— High 

Overall 
Agreement High High 

 
Table.2 Digital twin and Fused Sensor Outputs 
Performance Evaluation. 
Table 2 below will give the performance analysis of the 
fused sensor output versus the digital twin output at 
operating conditions which are dynamic. Rise time, 
steady-state values, noise properties, transient 
response, and tracking accuracy are some of the 
important parameters that are measured before and after 
a step change. The high matching degree between the 
two outputs points to the correctness and dependability 
of the digital twin model to simulate the real-time 
behavior of systems and sensor fusion performance 
validation. 
 

VI. CONCLUSION 

The comparative study of the fused sensor output and the 
digital twin output shows a great degree of consistency in 
both momentary and steady-state operating conditions. 
The system dynamics are properly represented in the 
digital twin, with the sudden increase in the beginning, 
steady-state dynamics, and accurate overshoot of the 
step change at 6 s. Small deviations that are experienced 
can be mostly attributed to sensor noise, whereas the 
digital twin response is more smooth and in-phase with 
the fused measurements. On the whole, the findings 
support the validity of the suggested digital twin 
framework to reliably simulate real-time system 
behavior, which proves that it can be used in system 
monitoring, performance evaluation, and predictive 
control. 
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