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Abstract—The growing adoption of renewable energy sources and the electric mobility has heightened the 
requirement of intelligent energy storage control that can act under dynamic and uncertain conditions. In this 
paper, we suggest a machine-learning-based algorithmic digital twin of real-time optimization of hybrid energy 
storage systems (HESS) consisting of batteries and supercapacitors. The created digital twin creates a high-
fidelity cyber-physical model of the physical HESS by keeping system conditions in parity with real-time 
measurements of voltage, current, power, and state-of-charge variables. The digital twin uses machine learning 
models to forecast the demand of the load, availability of renewable power, and the dynamics of energy storage 
systems to allow it to anticipate and react to changes in energy management. The proposed framework is the best 
method to divide power between the battery and the supercapacitor because it separates low-frequency and 
high-frequency power elements and, therefore, allows decreasing the current load in the battery, which will 
increase the efficiency of the entire system. The machine learning predictions are combined with control 
constraints via a real-time optimization layer, and the resulting reference signals are optimum ones to the power 
electronic converters. The simulation results at different operating conditions such as the rapid loading transient 
and renewable power variations have shown that the proposed digital twin-based solution is considerably better 
than the existing rule-based energy management solutions in terms of power tracking performance, battery 
current ripple, and battery life. The findings prove the usefulness of the proposed framework as a scalable and 
smart proposal to next generation hybrid energy storage systems in renewable energy and electric mobility 
applications. 
Keywords—: Digital Twin, Hybrid Energy Storage System, Machine Learning, Battery–Supercapacitor, Energy 
Management, Real-Time Optimization. 

 

I. INTRODUCTION 
The high rate of increasing the renewable energy sources, 
electric mobility, has posed massive challenges 
regarding the sustenance of the efficient operation of 
energy storage in a highly dynamic operating regime with 
high reliability and resilience. Energy storage systems are 
needed in applications like electric vehicles, integrated 
microgrids using renewable energy sources, smart 
energy systems, etc, to address the rapid changes in 
loads, intermittent crop of renewable energy, and high-
performance requirements. Traditional energy storage 
systems that exclusively use batteries tend to experience 
poor power density, thermal stress and accelerated aging 
due to repetitive high-current transients[1]. 
A new solution that has been proposed to eliminate these 
limitations is Hybrid Energy Storage Systems (HESS), 
which combines batteries with supercapacitors. In these 
designs, the battery is used to supply high energy density 
to satisfy average power needs, and the supercapacitor 

is used to supply high power density to respond to 
sudden load increases and occasions of regenerative 
braking. Despite the fact that HESS architectures have a 
happy effect of enhancing the performance of the system 
and battery life, their operation heavily relies on 
advanced energy management strategies that have the 
potential to allocate real-time power optimally among 
storage components[2]. 
Conventional methods of energy management such as: 
rule-based, frequency decomposition and optimization-
based methods are based on predetermined thresholds 
or system models. These methods are usually not flexible 
and strong when used in a state of uncertainty like load 
profiles changes, battery aging, variation of temperature, 
and fluctuation of renewable power. Consequently, the 
demand of smart, reconfigurable and information-driven 
control systems capable of real time reconfiguring the 
behavior of the systems is increasing[3]. 
Digital Twin, which describes a real-time virtual copy of a 
physical system that is maintained by constant exchange 
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of data, is an innovative concept that has received much 
attention as a groundbreaking technology in smart energy 
systems[4]. Digital twins allow real-time, predictive 
analysis, and system-level optimization because 
physical models employ real-world data on how to 
operate the system. Digital twins can also reproduce 
nonlinear dynamics of systems, learn on past data, and 
forecast future behavior of systems with a high level of 
accuracy when combined with machine learning 
methods, which makes them suitable in complex energy 
storage applications [5]. 
Digital twin applications in battery monitoring, fault 
diagnosis, and predictive maintenance have been 
recently considered but the incorporation of machine 
learning-powered digital twins into the optimization of 
hybrid energy storage systems in real-time is scarce. 
Specifically, limited literature exists on the topic of 
synchronized power exchange between the batteries and 
supercapacitors based on predictive intelligence in a 
cyber-physical context [6]. In addition, the current 
strategies are usually geared towards offline analysis as 
opposed to closed loop real time control. 
In order to fill these gaps, this paper suggests a digital 
twin framework based on machine learning to optimize 
battery-supercapacitor hybrid energy storage systems in 
real time. The joint solution that is proposed combines 
the real-time measurement data and data-driven 
predictive models in estimating the system states and 
predicting the load and renewable power variations. 
These predictions are used by a layer of energy 
management optimization to produce optimal control 
references to power electronic converters to provide an 
efficient power sharing, reduce battery stress, and 
improve system performance[7]. 

 
Figure 1. Digital Twin Framework of Hybrid Energy Storage 
Systems Optimization in Real-Time by the Use of Machine 
Learning. 

This Figure 1 indicates the digital twin architecture 
proposed to be used with the real-time optimization of a 
battery-supercapacitor hybrid energy storage system 
(HESS) and implemented with the help of machine 
learning. The framework incorporates both the physical 
and cyber version of the energy storage system of the 
system by continuously exchanging data on both 
directions and therefore facilitates intelligent monitoring, 
prediction and control [9]. 
The bottom one is the physical HESS, which is a battery 
and a supercapacitor connected to a common 48 V DC 
bus via a boost converter and a bidirectional DC-DC 
converter respectively. The battery only provides the 
average energy demand, whereas the supercapacitor is 
used to handle high-power transient demand. The 
physical system continuously provides real-time data on 
battery current, supercapacitor current, DC bus voltage, 
state-of-charge, load demand, and renewable power. 

II. SYSTEM DESCRIPTION 

An ML-based Digital Twin (DT) of a Hybrid Energy Storage 
System (HESS) is created to facilitate real-time 
monitoring, prediction, and optimal control of the energy 
storage resources in the contemporary power systems. 
The HESS is composed of Battery Energy Storage System 
(BESS) and Supercapacitor Energy Storage System 
(SCESS) that have complementary functions. The battery 
has good energy density and it is capable of sustaining 
long-term energy balancing. The supercapacitor has high 
power density, which can support quick transient power 
requests and alleviate the battery strain[8]. 
The Digital Twin is the simulated version of the physical 
HESS, which is constantly updated through real-time 
sensor measurements in the form of voltage, current, 
state of charge (SoC), temperature, and load demand. 
The ML model installed in the DT is used to forecast the 
states of the system and the tendencies to degradation, 
allowing optimizing the allocation of power between the 
battery and supercapacitors in real-time. 
The system architecture includes: 

▪ Physical HESS 
▪ Data acquisition and communication 

layer. 
▪ Digital Twin model 
▪ ML-based prediction engine 
▪ Control layer and optimization layer. 

A. Mathematical Modelling of Hybrid Energy Storage 
System 

Power Balance Equation 
The total power demand 𝑃𝑙𝑜𝑎𝑑(𝑡)is met by the hybrid 
storage system: 
                         𝑃𝑙𝑜𝑎𝑑(𝑡) = 𝑃𝑏(𝑡) + 𝑃𝑠𝑐(𝑡)(1) 
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where: 
𝑃𝑏(𝑡)– Battery power (W) 
𝑃𝑠𝑐(𝑡)– Supercapacitor power (W) 

B.  Battery Energy Storage System (BESS) Model 

Battery State of Charge (SoC) 
𝑑𝑆𝑜𝐶𝑏(𝑡)

𝑑𝑡
= −

𝜂𝑏

𝐸𝑏
𝑟𝑎𝑡𝑒𝑑

𝑃𝑏(𝑡)(2) 

 
where: 
𝑆𝑜𝐶𝑏 ∈ [0,1]– Battery state of charge 
𝜂𝑏– Battery efficiency 
𝐸𝑏

𝑟𝑎𝑡𝑒𝑑– Rated battery energy (Wh) 
Battery Terminal Voltage 
                    𝑉𝑏(𝑡) = 𝑉𝑜𝑐(𝑆𝑜𝐶𝑏) − 𝐼𝑏(𝑡)𝑅𝑏(3) 
 
𝑉𝑜𝑐– Open-circuit voltage,𝐼𝑏– Battery current , 𝑅𝑏– 
Internal resistance. 

C. Supercapacitor Energy Storage System (SCESS) 
Model 

Supercapacitor Voltage Dynamics 
                               

𝑑𝑉𝑠𝑐(𝑡)

𝑑𝑡
= −

1

𝐶𝑠𝑐
𝐼𝑠𝑐(𝑡) (4) 

where: 
𝑉𝑠𝑐– Supercapacitor voltage 
𝐶𝑠𝑐– Capacitance 
𝐼𝑠𝑐– Supercapacitor current 

D. Supercapacitor Energy 

                                𝐸𝑠𝑐(𝑡) =
1

2
𝐶𝑠𝑐𝑉𝑠𝑐

2(𝑡)(5) 
The Digital Twin represents the virtual state of the 
HESS: 

𝐱𝐷𝑇(𝑡) = [𝑆𝑜𝐶𝑏(𝑡), 𝑉𝑠𝑐(𝑡), 𝑇𝑏(𝑡), 𝑇𝑠𝑐(𝑡)](6) 
 
The twin is updated using real-time measurements: 

𝐱𝐷𝑇(𝑡 + 1) = 𝑓(𝐱𝐷𝑇(𝑡), 𝐮(𝑡), 𝐰(𝑡))(7) 
where: 
𝐮(𝑡)– Control inputs 
𝐰(𝑡)– System disturbances 
𝑓(⋅)– System dynamics function 

E. Machine Learning-Based Prediction Model 
A supervised ML model (e.g., LSTM, ANN, or Random 
Forest) predicts future system states: 

𝐱̂(𝑡 + 𝑘) = ℳ(𝐱(𝑡), 𝐏𝑙𝑜𝑎𝑑(𝑡))(8) 
 
where: 
ℳ(⋅)– Trained ML model 
𝑘– Prediction horizon 
Predicted outputs include: 

• Future SoC 
• Power demand trends 
• Degradation indicators 

 

F.  Optimization Problem Formulation 

The real-time optimization minimizes battery 
degradation and power losses: 
min 𝐽 = ∫ (𝛼𝑃𝑏

2(𝑡) + 𝛽Δ𝑆𝑜𝐶𝑏(𝑡) + 𝛾𝑃𝑙𝑜𝑠𝑠(𝑡))
𝑇

0
𝑑𝑡(9) 

 
where: 
𝛼, 𝛽, 𝛾– Weighting factors 

POWER CONSTRAINTS 

                              𝑃𝑏
𝑚𝑖𝑛 ≤ 𝑃𝑏(𝑡) ≤ 𝑃𝑏

𝑚𝑎𝑥(10) 
𝑃𝑠𝑐

𝑚𝑖𝑛 ≤ 𝑃𝑠𝑐(𝑡) ≤ 𝑃𝑠𝑐
𝑚𝑎𝑥(11) 

SoC Constraints 
                       𝑆𝑜𝐶𝑏

𝑚𝑖𝑛 ≤ 𝑆𝑜𝐶𝑏(𝑡) ≤ 𝑆𝑜𝐶𝑏
𝑚𝑎𝑥(11) 

Real-Time Control Strategy 
The optimized power references are: 

𝑃𝑏
∗(𝑡), 𝑃𝑠𝑐

∗ (𝑡) 

III. LITERATURE SURVEY 

The emergence of hybrid energy storage systems (HESS) 
with a combination of batteries and supercapacitors 
have raised research attention because of their 
complementary nature which is high energy density with 
batteries and power density with supercapacitors. An 
overview of the concepts, topologies, control measures 
and applications of HESS demonstrates that energy 
management is one of the key fields of research, where 
machine-learning and adaptive approaches are receiving 
much interest in the effective distribution of power and 
stable operation in changing conditions.  
Digital twin (DT) technology is becoming one of the key 
paradigms of real-time monitoring, prediction, and 
optimization of complex energy systems. A recent 
systematic review of the literature on DT applications in 
battery energy storage systems (BESS) points out the 
growing use of artificial intelligence (AI), Internet of Things 
(IoT), and edge/cloud computing capabilities to provide 
predictive analytics and condition estimation and enable 
closed-loop synchronization between the cyber and 
physical layers. Nonetheless, literature also indicates 
issues revolving around real time synchronization, 
heterogeneity of data, scalability, and model robustness, 
that are aggravating factors behind the deployment of DT.  
A number of main works give wider insights on DT 
applications in energy and battery systems. The literature 
of the renewable energy sector points at the combination 
of DT and machine learning as one of the key facilitators 
to more advanced predictive power, anomaly detection, 
optimization of operations, and system resiliency of 
solar, wind, and microgrid systems. In a similar manner, 
specific surveys on DTs in battery systems address 
architectural layers, important data streams (e.g., 
SOC/SOH measurements), and applications of the 
technology, e.g., performance optimization, fault 
detection, and decision support.Crossing of machine 
learning with digital twin models has also started to 
attract attention. Some of the tasks that machine 
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learning has been applied to include data-driven state of 
charge (SOC) estimation in hybrid packs, which have 
shown great progress in predictive accuracy of dynamic 
storage systems. In addition, digital twin systems with 
predictive AI have been suggested to further lifecycle 
management, better remaining useful life (RUL) 
prediction accuracy, and system efficiency, especially 
when implemented in conjunction with cloud-edge 
systems.  
Although these developments are made, there are 
limited studies on literature specifically focused on real-
time optimization of HESS through machine-learning 
based digital twins. Most of the existing literature 
addresses DT and machine learning in energy storage 
separately or only specialized in battery-only systems, 
and has less extensive literature that covers coordinated 
power sharing of batteries and supercapacitors in an 
entirely closed-loop cyber-physical system. The above 
literature gap highlights the need to combine their 
schemes that merge predictive intelligence, real-time 
synchronization, and optimization schemes to enhance 
the performance of HESS- especially when operating in 
variable environments like those experienced by the 
electric and solar vehicles traction systems. 
    

Parameter 
Conventional 
EMS 

ML-
Based 
EMS 

ML-Driven 
Digital Twin 
(Proposed) 

Power 
Sharing 

Rule-based / 
fixed 

Data-
driven 

Predictive & 
adaptive 

Real-Time 
Adaptability Low Medium High 

Battery 
Current 
Ripple 

High Reduced Minimum 

Battery 
Stress & 
Aging 

High Moderate Low 

Transient 
Response 

Slow Faster Fastest 

Prediction 
Capability No 

Yes 
(limited) 

Yes (load & 
RES) 

System 
Optimization 

Offline / static 
Semi-
online 

Real-time 
optimization 

Scalability Limited Moderate 
High (cyber–
physical) 

 

Table 1. Comparison of Energy Management Strategies 
for Hybrid Energy Storage Systems. 
This Table 1 presents a comparative analysis of different 
energy management strategies applied to hybrid energy 
storage systems (HESS), including conventional rule-
based methods, machine learning-based approaches, 
and the proposed machine learning–driven digital twin 
framework. The comparison is based on key performance 
parameters such as power sharing capability, real-time 
adaptability, battery current ripple, system optimization, 
and scalability. The results highlight that the proposed 

digital twin-based approach provides superior real-time 
optimization, improved transient response, reduced 
battery stress, and enhanced adaptability under dynamic 
operating conditions, making it well suited for advanced 
renewable energy and electric vehicle applications. 

IV. METHODOLOGY 
The hybrid energy storage system (HESS) that will be used 
in this paper is the battery and the supercapacitor that 
will be connected to a common DC bus with the help of 
the proper DC-DC converters. The mathematical 
modelling will aim to model the dynamic behaviour of all 
storage elements, define the balance of power at the DC 
bus and develop a control-oriented model that would be 
useful to deploy to a digital twin and solve using real-time 
optimisation. 
A. Battery Dynamic Model 

A Thevenin-based equivalent circuit is used to model the 
battery, representing the key electrical properties without 
introducing any complexities to the system, and can be 
controlled on a real-time scale and provide a digital twin. 
The voltage across the internal resistance, which is 
obtained by subtracting the open-circuit voltage and 
voltage across the internal resistance, is the terminal 
voltage of the battery. Based on this, battery terminal 
voltage Vb can  be stated as follows. 

𝑉𝑏 = 𝑉𝑜𝑐(𝑆𝑂𝐶𝑏) − 𝐼𝑏𝑅𝑏(12) 
 
Voc (SOCb) open-circuit voltage is a nonlinear function of 

SOC and Ibis battery current and Rb represents internal 

resistance. Coulomb counting principle yields SOC. As SOC 

is a ratio of the remaining charge and the nominal battery 

capacity, the time derivative of SOC is proportional to the 

current in the battery. Therefore, the SOC dynamics are 

provided as follows 
𝑑𝑆𝑂𝐶𝑏

𝑑𝑡
= −

𝐼𝑏

𝑄𝑏

(13) 

where 𝑄𝑏 is the rated battery capacity. This equation 
indicates that high current transients directly accelerate 
SOC variation, highlighting the importance of limiting 
battery current fluctuations through proper energy 
management. 
B. Supercapacitor Dynamic Model 

This is an equivalent capacitance which models the 
supercapacitor (as series) and additionally models an 
internal resistance. Contrary to batteries, 
supercapacitors are able to store energy in the form of 
electricity and this is why they have fast charge and 
discharge cycles. The capacitor voltagecurrent 
relationship provides the voltage across the 
supercapacitor which is given by. 

𝐼𝑠𝑐 = 𝐶𝑠𝑐
𝑑𝑉𝑠𝑐

𝑑𝑡
(14) 

Rearranging the above expression and incorporating the 
resistive voltage drop yields 
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  𝑉𝑠𝑐 =
1

𝐶𝑠𝑐

∫ 𝐼𝑠𝑐  𝑑𝑡 − 𝐼𝑠𝑐𝑅𝑠𝑐(15) 

where 𝐶𝑠𝑐is the supercapacitor capacitance and 𝑅𝑠𝑐is its 
equivalent series resistance. This formulation shows that 
the supercapacitor voltage responds rapidly to changes 
in current, making it suitable for handling high-frequency 
power fluctuations. 
C. DC Bus Power Balance Derivation 

The DC bus serves as the common coupling point 
between the energy sources and the traction load. 
Applying the principle of power conservation at the DC 
bus, the total load power demand must be satisfied by 
the combined contributions of the photovoltaic source, 
battery, and supercapacitor. Therefore, the power 
balance equation is written as 

𝑃𝑙𝑜𝑎𝑑 = 𝑃𝑝𝑣 + 𝑃𝑏 + 𝑃𝑠𝑐(16) 
 
Expressing battery and supercapacitor power in terms of 
DC bus voltage 𝑉𝑑𝑐and respective currents yields 

𝑃𝑏 = 𝑉𝑑𝑐𝐼𝑏 , 𝑃𝑠𝑐 = 𝑉𝑑𝑐𝐼𝑠𝑐(17) 
 
Substituting these expressions into the power balance 
equation establishes a direct relationship between DC 
bus voltage regulation and current sharing among energy 
storage components. 

D. Machine Learning-Based Prediction Integration 
Within the digital twin framework, machine learning 
models are employed to predict future load demand and 
renewable power availability. These predictions are 
mathematically expressed as 

𝑃̂𝑙𝑜𝑎𝑑(𝑡 + 𝑘) = ℳ1(𝐳(𝑡))(18) 
𝑃̂𝑝𝑣(𝑡 + 𝑘) = ℳ2(𝐳(𝑡)) 

where ℳ1 and ℳ2 denote trained machine learning 
models and 𝐳(𝑡)is a feature vector containing historical 
power, SOC, voltage, and current data. These predictions 
enable proactive energy management by anticipating 
future operating conditions. 

E. Optimization-Based Power Allocation 

Using the predicted system states, an optimization 
problem is formulated to minimize battery stress and 
ensure DC bus stability. The objective function penalizes 
battery current magnitude and current ripple, and is 
expressed as 

𝐽 = ∫ (𝛼𝐼𝑏
2 + 𝛽 (

𝑑𝐼𝑏

𝑑𝑡
)

2

)

𝑇

0

𝑑𝑡(19) 

Subject to system constraints on SOC, voltage, and 
current, the solution of this optimization problem yields 
optimal current references for the battery and 
supercapacitor. High-frequency power components are 

allocated to the supercapacitor, while the battery 
supplies low-frequency energy demand. 

E. Closed-Loop Digital Twin Synchronization 
Lastly, the digital twin is continuously updated of its 
internal states by real-time measurements of the 
physical system. An action like a difference in prediction 
and measurement in any form is considered to update 
model parameters and re-train machine learning 
components, which guarantee long-term accuracy and 
resiliency. This is a closed loop cyber-physical 
interaction to optimize and adaptively control the hybrid 
energy storage system in real time. 

V. RESULTS 

This Figure depicts the dynamic behaviour of a Digital 
Twin that is built using Machine Learning (ML) to model a 
Hybrid Energy Storage System (HESS) consisting of a 
battery and a supercapacitor under different loading 
conditions. 
This subplot displays the instantaneous power flow 
between the load, battery and the supercapacitor. The 
battery provides most of the load requirement, with the 
medium- and long-term power needs, but the 
supercapacitor provides a smaller but quick-reacting 
power element to offset short-term variations and 
transients. The digital twin is smart enough to organize 
power sharing in a way that facilitates the tracking of 
loads and minimal load on the battery. 

 
Figure. 2 Machine Learning–Driven Digital Twin–Based 
Power Sharing and State Evolution in a Hybrid Energy 
Storage System (HESS) 
The supercapacitor voltage shows a gradual decline over 
time, corresponding to its contribution in handling rapid 
power variations. The relatively stable voltage trajectory 
confirms controlled discharge, highlighting the 
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supercapacitor’s role in enhancing system 
responsiveness and extending battery lifespan. 
Overall, the figure demonstrates the effectiveness of the 
ML-driven digital twin in coordinating power flow, 
tracking internal states, and improving operational 
reliability of the HESS under dynamic load conditions. 

VI. CONCLUSION 

This paper illustrates a successful implementation of a 
machine learning-based digital twin to intelligent energy 
management in a Hybrid Energy Storage System (HESS) 
of a battery and a supercapacitor. The findings validate 
the fact that the digital twin is capable of accurately 
capturing the dynamics of the system and facilitate 
power sharing during the conditions of changing loads. 
The battery can provide the average and long-term power 
load, whereas the supercapacitor will help effectively to 
counteract the sudden changes in power, which will 
alleviate the load in the battery.The battery state-of-
charge and supercapacitor voltage profiles observed 
confirm the complementary functionality of the hybrid 
storage architecture and show the potential of the digital 
twin in real-time monitoring of internal states. Through 
the use of data-based intelligence, the given framework 
increases the reliability of operations, advances the 
power quality, and provides degradation-conscious 
management of storage units. 
In general, the ML-based digital twin offers a flexible and 
scalable approach to high-tech energy management in 
the contemporary power systems, which is why it is 
especially applicable to microgrids that implement 
renewable energy and smart grids. Future directions can 
involve adding aging models, real-time hardware-in-the-
loop validation, and reinforcement learning-based 
control strategies that can further improve system 
performance and autonomy. 
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