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Abstract— Digital Twin (DT) technology is emerging as a transformative force in the modernization of cyber-
physical systems (CPSs), enabling seamless integration between physical infrastructure and its virtual 
counterpart. This paper presents a comprehensive review of DT concepts, historical evolution, and enabling 
technologies—such as the Internet of Things (IoT), artificial intelligence (AI), machine learning (ML), and cyber-
physical systems to support real-time monitoring, predictive maintenance, and system optimization. The paper 
begins with foundational frameworks for modelling digital replica modules and cooperative operation as twin 
systems. It discusses the application of DTs in improving monitoring, control, system resilience, network 
integration, component tuning, and managing decentralized edge-based cyber-physical systems is explored in 
depth. The paper draws attention towards the applicability of digital replica and twin system technology in the 
power grid as an evolving cyber-physical system. It also includes key challenges like data accuracy, 
communication latency, and system interoperability in terms of digital twin operation and management.  
Keywords—: Digital Replica, Digital Instances, Digital Twin, Cyber-Physical System, Smart Grid, Artificial intelligence (AI), and 
machine learning (ML). 

I. INTRODUCTION 

A. Digital Twin Technology 

Digital twin (DT) technology has been one of the most 
prominent fields of study over the last few decades, and 
it is now growing and changing at a fast pace. DT mirrors 
the entire existence cycle of the equivalent physical item 
and allows for the mapping of virtual to physical space. 
Many other types of industrial applications have found 
success using DT technology. These include electric 
cars, intelligent manufacturing, energy conversion, 
space missions, and many more. Electrical systems gain 
from DT development when considering both the impacts 
that have been accomplished and the potential that is yet 
to be attained. In this digital age, many ideas and 
technologies are revolutionizing the built environment by 
incorporating smart features into buildings, houses, and 
cities for the benefit of their inhabitants. A project's and 
the built environment's performance can be improved 
with use of digital technology [1].  IT processes, 
intelligence, and automation make up the numerous the 
foundations that support this digital transformation 
process, which also includes training the workforce for 
this change. In their assessment of companies that have 
successfully undergone a digital shift, McKinsey outlined 
the digital technology, tools, and processes that these 
companies used to reach their digital transformation 
objective. Beginning with cloud-based services, which 
enable the expansion of firm assets and reachability to 

workers and consumers, and traditional online and 
mobile technology deployment are at the top of the list. 
The second step is to use Big Data infrastructures and 
analytic methodologies to derive business choices. This 
involves integrating IoT technology to gather data from 
any chosen source. In addition, by producing insights, 
anticipating trends, and discovering connections, use of 
AI and ML algorithms may improve transformation 
process. Augmented reality is the last pillar; it improves 
digitalization and gives consumers an immersive 
experience with their equipment. Data visualization, 
monitoring, operation, and other applications can benefit 
from DT's ability to digitally represent real-world items 
and create a two-way relationship between them. To 
create digital entities and transfer data from physical to 
digital realm, DT employs a variety of technologies, 
including as building information modeling and the IoT. 
The technology it can interface with and the jobs it can 
complete determine DT's capabilities.  
The rapidly developing technology of DTs has potential 
applications in many different industries for things like 
lifecycle management and predictive analysis. People 
and businesses can benefit from this technology 
because it reveals important details about the inner 
workings of a system, such as its relationships and future 
behaviour. There is an increasing interest in development 
and use of digital technologies across several sectors, 
including smart cities, metropolitan areas, logistics, 
healthcare, engineering, and automobile industry. Today, 
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the fuel and energy industry are actively using DT 
technology to address a range of technical and 
technological issues. Traditional control and monitoring 
systems may miss anomalies in industrial equipment's 
performance because they may not yet impact the 
equipment's state. However, the digital twin enables 
exceptionally sensitive detection of such deviations [2]. 

B. DT in the Power Industry and Future Power System  

The majority of the power industry's digital twin 
research has concentrated on the following areas: 
evaluating the technical status of power equipment [3-5], 
controlling the modes of operation of the power system, 
optimizing energy consumption, and solving the technical 
problems associated with integrating renewable energy 
sources [6-8]. Research on electrical network digital twins 
using an ontological approach is presented in the paper 
[9]. To examine the modes of functioning of the power 
system and guarantee its security, the suggested method 
employs digital twin technology.  In [10], scenarios for the 
implementation of DT technology at the Cai-Lun 
substation in China are presented. 

• Simulating the system in real or quasi-real-time 
• Ensuring data transmission between the digital 

twin and the ontology-based system are the major 
requirements given forth in the design of the digital 
twin. 

 
Fig.1 Digital Twin Use Cases in Power Systems. 

 
This approach relies on establishing links between 
different forms of information in the digital realm. 
Consideration of the system's uncertainty due to the 
existence of different generators, consumers, and the 
likelihood of power equipment failure is included into the 
DT utilized for the study of the simulated system [11]. In 
[12] presents a study on the application of the digital twin 
concept to the development of an intelligent system to 
assist in the operation and maintenance of a photovoltaic 
power plant, utilizing 3D modeling technologies. The 
development of tidal power plants is predicted using 
digital twin technology in [13]. 
Future power system will have to change its operating 
approach drastically to accommodate active prosumers 
and dispersed renewable energy resources. Its 
uncertainty and grid-connected power electronic 
converters potential to provide both random and planned 
disruptions to system are two concerns. Additionally, grid 
stability is at risk when natural energy reserves disappear 
primarily a result of increasing withdrawal of traditional 

synchronous generators, which substantially lowers 
system's available inertia. Due to their flexibility, rapid 
response, and local control over production and 
consumption, distributed power converters provide 
significant efficiency and financial advantages. Various 
storage systems and renewable energy sources will 
constitute production, while economic dispatch and 
peak shaving are instances of consumption strategies 
that may be customized to satisfy particular local and 
individual requirements. Accessing current 
environmental, economic, and operational data on the 
interconnected system and its actors is essential for 
addressing the challenges of the transition and 
leveraging its transformative opportunities. CPSs has 
gained a popularity in recent years. Combining both 
physical and computational components into a virtual 
environment maximizes real-world processes and to 
build strong energy systems at all levels with intelligence, 
dependability, and security [14].  
 

 
Fig.2 Wind Turbine as a Model for Digital Twin [41]. 

DT technology is needed in future power systems to 
manage complexity and demands of modern energy 
networks. By simulating physical assets and systems, 
DTs provide real-time monitoring, predictive 
maintenance, and grid efficiency. This enhances grid 
dependability and resilience, enabling utilities to 
proactively identify defects and avert outages. DTs 
facilitate the incorporation of renewable energy sources 
by modeling their fluctuations and optimizing the 
equilibrium between demand and supply. Moreover, they 
are crucial in overseeing decentralized grids, including 
microgrids, and enable peer-to-peer energy transactions. 
Through the enhancement of asset management, the 
reduction of operational inefficiencies, and the 
improvement of cybersecurity, digital technologies 
substantially decrease costs while guaranteeing system 
sustainability and adherence to environmental 
objectives. Moreover, digital twins allow the evaluation of 
novel technologies and situations inside a risk-free virtual 
setting, hence expediting innovation and grid 
modernization. Modern modeling tools and systematic 
investigation of the interaction between cyber and 
physical systems are foundation of integration [15]. A 
popular and effective approach for attaining CPS is the 
use of DTs, which are grounded on physical system 
models and include processing, connectivity, and data 
storage capabilities. A vital facilitating instrument for 
cyber-physical power systems, DT may gather, predict, 
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and represent virtual or real conditions for human-
system interaction and autonomous functioning [16]. 

II.  DIGITAL TWIN CONCEPT AND FRAMEWORK 

A. Origin of DT  

In the 1960s, NASA used DT in Apollo program to build 
physical replicas of Earth that aligned with their systems 
in space for the first time. This methodology was used to 
simulate several situations, allowing for evaluation of 
system behaviour and performance under diverse 
settings. It escalated when twin interfered to 
handle technological challenges of the Apollo 13 mission, 
which engineers on Earth had tackled by testing potential 
solutions on terrestrial twin. Before Michael Grieves 
introduced virtual factory models in the early 2000s for 
operational monitoring, failure prediction, and efficiency 
enhancement, idea of DTs had not been considered 
in manufacturing sector. 

 
Fig.3 Development of DT Timeline. 

This concept's increased visibility and impact were 

reinforced by prominent companies such as Siemens [17] and 

General Electric [18], as well as Gartner's classification of it 

as one of the top 10 significant technology trends of 2017.  

B. Types, Advantages and Characteristics of DT 

Different types of DTs can be classified based on 
various factors, such as their development time, level of 
integration, applications, hierarchy, and maturity. 
Considering these factors, some researchers have 
suggested different ways to categorize DTs.    

1. DT Creation Time 

Grieves and Vickers [53,54] proposed that DTs fall into 
two main categories based on the product's development 
stage: design phase (before the prototype is built) and 
production phase.  

• Digital twin instance (DTI):  It is a type of DT that 
represents its physical version throughout its entire 
life [55]. This means that DT is affected by any 
changes or evolutions that occur to the physical 
twin, and that its status is constantly tracked as 
shown in Fig. 4.  

 

Fig.4 DT Instance. 
• Digital twin prototype (DTP): It is helpful for product 

development and production because it captures 
and stores crucial information about the physical 
twin. Before simulating production conditions, the 
DTP may conduct evaluation, validation, and 
quality control testing in accordance with DT 
standards as shown in Fig. 5.  

 
Fig.5 DT Prototype. 

• Digital twin aggregate (DTA): The aggregate is a 
combination of digital twin instances. It receives 
data from many physical objects as shown in Fig. 6. 

 
Fig.6 DT Aggregate. 

2. Level of Integration  
Based on how well DTs were integrated, Kritzinger et 

al. [56] split them into three groups:  
• Digital Model: In this type of DT, data is 

transferred manually between physical and 
digital objects. This means any changes to 
physical object do not instantly update in the 
digital version, and vice versa.  

• Digital Shadow: In this type of DT, when physical 
things undergo alterations, their digital replicas 
are updated immediately. But changing the digital 
version doesn’t easily affect real object. 
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Fig.7 Data Flow in DT at Different Subcategories. 

 
• Digital Twin: In this type of DT, data flows 

automatically between physical and digital 
versions. Changes in one always lead to 
changes in the other as shown in Fig. 7. 

3. Hierarchy 

Implementation of DTs is a highly intricate and tedious 
process. Hierarchical structure suggests that DT can be 
completed in three phases. The first stage is to construct 
the DT at the unit level [57]. By using the DT unit, we can 
enable smart monitoring, control, and equipment health 
management. The next step is building a system-level DT, 
where multiple units combine to support smart 
manufacturing. Finally, the SoS level [58] is reached by 
integrating both unit-level and system-level DTs shown in 
Fig. 8.  

 
Fig.8 Hierarchical Levels of DTs in Manufacturing 

[57]. 
4. Recapitulation 

Implementing DTs is a complex and time-consuming 
task. A hierarchical structure divides process into three 
phases. First, DT is built at unit level, enabling smart 
monitoring, control, and equipment health management. 
Next, multiple units combine to form system-level DT, 
supporting smart manufacturing. Finally, SoS level is 
reached by integrating both unit-level and system-level 
DTs [59]. 

5. Level of Maturity/Sophistication 

Complexity of a DT depends on how much and how 
well data is collected from its physical counterpart and 
surroundings. This helps categorize DTs into different 
types [60]: Partial DT: It provides a limited set of data 
points that may be used to ascertain connection and 
performance of DT; these data points may include things 

like pressure, temperature, humidity, and so on. Clone 
DT: It includes all the important and necessary 
product/system data that may be utilized to create 
prototypes and organize development stages. 
Augmented DT: By the application of algorithms and 
analytics, it draws from asset data and its historical data 
to extract and correlate valuable information. The 
acquisition of more datasets throughout operational 
periods may enhance the complexity level of DT. In the 
view of Azad M. Madni et al. [61], the degree of 
development of DT includes not only the data but also the 
degree of complexity of the model or virtual 
representation. 

6. Advantages of DT  

A few benefits of DT technology have led to its 
positioning as a cornerstone in Industry 4.0. These 
include the fact that it can improve the efficiency, 
accuracy, and cost-effectiveness of any system or 
process. It also breaks down conventional industrial 
systems' separation and divisionism, which helps 
streamline processes and organizations. 

 
Fig.9 Advantages of DT. 

A few of the benefits that have been mentioned for DT 
are: 

• Redesigning products and speed prototyping: 
Prototyping and redesigning become more 
simpler and quicker when using simulations to 
examine several situations; this is because the 
design and analysis cycles are shortened. Once 
put into place, DT may be used throughout 
several phases of product design, beginning with 
ideation and continuing through testing [62]. In 
addition, it opens the way for the possibility of 
tailoring products to individual customers by 
collecting and analysing data on their wants and 
product use. Engineers and product designers 
may reevaluate their methodology in product 
development, since a DT remains linked to its 
physical twin, influencing both its present and 
future performance. 

• Affordable: Over a time, cost of prototyping 
decreases as digital technology mostly utilizes 
virtual resources. In contrast, using digital 
technology, items may be reconstructed and 
subjected to destructive testing without 
additional material expenses, resulting in 
significant time savings compared to 
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conventional prototyping techniques. This is due 
to conventional prototyping's need on physical 
materials and labor, which may be costly and 
time-intensive. Through digital testing, products 
may be economically evaluated under many 
operating settings, even adverse ones.  

• Improving Maintenance and Optimizing 
Solutions: Traditional maintenance methods are 
more reactive than proactive because they follow 
general rules and worst-case assumptions rather 
than considering each product's specific 
material, design, and usage [63]. On the other 
hand, DT can predict production system failures 
and plan maintenance in advance. With DT’s 
scenario-based solutions and strategies, 
maintaining products and systems becomes 
much easier. Additionally, DT’s physical 
counterpart can be used in a continuous 
feedback loop to constantly improve and validate 
the system’s processes. 

• Training: DT can help create better safety training 
programs with clearer examples than traditional 
methods. Operators may be DT-trained before 
operating potentially dangerous equipment or at 
a high-risk location; this will help them feel more 
prepared to handle real-life events by exposing 
them to and teaching them various techniques. 
New hires in the mining industry, for instance, 
may learn how to operate heavy gear and respond 
to various emergencies with the help of DT.  

 

III. DIGITAL TWIN IN POWER SYSTEMS 
Since its origin in 2002, [19] a concept of a DT has been 

used across several industries with diverse 
interpretations. Due to their many conceptual 
applications in sectors such as industry, aviation, health, 
and energy, digital twins are seen in various manners. 
Although there may be minor differences on specifics, the 
three main aspects of the DT concept that are widely 
accepted are: The phrase "two-way data flow" [20] 
denotes the bidirectional connection between a virtual 
representation of a physical asset and asset itself. From 
this underlying principle, two categories of definitions 
emerge: Two primary perspectives exist on this subject: 
one that focuses on specific components of Figure 10 and 
another that seeks to include all subsystems dependent 
on the program to provide the requisite functionality for 
DT. 

 

Fig.10 DT Process: from Physical to Virtual. 

Research on DT's potential uses in simulating power 
system dynamics is sparse. Nevertheless, DTs have found 
use in dynamic modeling in various fields, including 
simulations of big plants and manufacturing. When it 
came to DT of power systems, Siemens' PSS®ODMS was 
the market leader. Using the CIM as a guide, Siemens® 
created the system. Grid modeling relies on this 
technology, which links the created models to actual data 
in real time. American Electric electricity's DT project and 
the electricity transmission network in Finland both make 
use of it. As a replacement for the existing architecture of 
web analytics, Zhou et al. [21] have presented a 
conceptual approach. A technological need of real-time 
simulation capabilities has mainly prompted efforts to 
improve processing speed. As a result of Zhou's research, 
the potential for ANN modelling has been discovered. A 
conceptual approach for a power system mirror that 
continuously adjusts with dynamic power system models 
has been outlined by authors in [22]. Models based on 
physics and ANNs have been proposed in the study. For 
gas turbine system-specific plant duplication 
applications, GE offers the Analytical Engine. Physical and 
ANNs are employed to implement dynamic modelling 
methodologies. In [23], modern technologies such as AI, 
cloud computing, big data analytics, and IoT have 
substantially increased development of smart 
manufacturing. Manufacturers are increasingly 
implementing cyber-physical integration, which is a 
critical prerequisite for smart manufacturing. 

The fuel and energy industry are now making extensive 
use of DT technology in order to address a wide range of 
technical and technological issues. The DT makes it 
possible to detect deviating parameters in the operation 
of industrial equipment with an unusually high level of 
sensitivity. The enabling technologies that support DT's 
features are the backbone of DT's origins and 
developments. Their capabilities cover all bases, 
including ensuring that measurements are coordinated, 
models are correct, communication is real-time, and 
services can analyse massive volumes of data. Enabling 
technologies are outlined in this section in the following 
order: data acquisition, modelling, communication, 
computation, and data analysis. 
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A. Data Acquisition 

Measurement and sensing devices provide real-time 
data to DT functions, acting as a bridge between the digital 
and physical realms. It is important that the data 
collection interfaces be consistent and that the protocols 
employed offer sufficient transmission speeds to keep the 
DTs synchronised. This is especially true since various 
applications have varying needs when it comes to 
transmission delay. 

SCADA/PMU: The Supervisory Control and Data 
Acquisition (SCADA) system is a typical way of exchanging 
data between a control/monitoring unit and the 
associated devices. Modern SCADA systems may 
wirelessly communicate with microprocessors to collect 
data from faraway units or controllers; however, this data 
is not time stamped and updates at a slow pace [24]. 
Power system control centres are increasingly utilising 
Phasor Measurement Units (PMUs) for real-time 
identification and monitoring, improving condition 
monitoring, and fault detection and diagnosis. PMUs are 
multifunctional signal acquisition systems with a 
significantly larger sample rate than SCADA [25]. For 
large-scale power systems, PMUs based on the Global 
Positioning System (GPS) can provide locally 
synchronised phasors of phase voltages and currents 
over a large geographical area. This makes them useful for 
detecting transient events, particularly stability-related 
issues where quick decisions are needed to prevent fault 
propagation [26].  

Combining SCADA and PMU in DT offers a potential 
foundation for an adaptive and automated control system 
for energy systems [27], even if the ideal location of PMUs 
to balance hardware investment costs and complete 
estimating capabilities is still an open research subject 
[28]. Over an extended length of time, condition 
monitoring may provide an estimate of the asset's 
condition. For such sluggish jobs, the typical update rate 
of SCADA systems—on the range of minutes [29]—is 
more than enough. Lower latency and quicker 
computational execution are critical for other DT 
applications like asset optimisation methods. It is 
recommended to use a PMU system for data collection. 

B. Modeling Technologies 
Developing a reliable virtual representation capable of 

providing simulation results or predictions in real-time 
poses the greatest challenge to the modelling issue since 
it is a crucial component of DTs. Despite its long history of 
study, the question of how to accurately and affordably 
model complicated, large-scale power systems still 
needs answering. In this case, DT technology can help 
with both system identification and model reduction. 

System identification: In order to accurately and 
continuously portray the physical system, it is necessary 
to update the models to account for changes or 

deterioration caused by factors like ageing. System 
identification updates the mathematical description of 
the dynamical system's properties using measurable 
input–output data. DT models may be classed into three 
categories based on system understanding and 
applications: white box, grey box, and black box. Data 
dependability rises when previous knowledge of the 
physical system structure diminishes. Interactions 
between sub models may cause assumptions and 
simplifications to worsen overall behaviour, even if 
individual sub models are accurate and perform well.  

Model reduction: Higher system complexity means 
more model states and greater computing effort for 
simulation. DTs of large-scale power systems may use 
model reduction to speed up simulations while 
maintaining anticipated realism. If physical processes or 
components have little impact on the system, excluding 
or simplifying them reduces model order. Thus, any model 
must balance modelling depth, simplicity, simulation 
accuracy, and speed. There are known mathematical 
order reduction techniques such balanced truncation, 
Krylov subspace, singular value decomposition, and 
orthogonal decomposition for linear and nonlinear 
systems [30]. A reduced-order model of the complete 
system may increase simulation errors, particularly 
during disturbances. In problematic situations, moving to 
full models from reduced models might enhance 
performance. DTs for power electronic devices also use 
model partitioning before order reduction to speed up 
simulation. 

C. Communicating Technology 
In order to fully use the data that has been measured 

and collected locally, it is essential that communication 
technologies provide access to higher-level or worldwide 
data. Thus, data-based holistic system modelling and 
identification tools need this. The growing volume of data 
transmitted in DT, whether locally or across adjacent DTs, 
strains communication capacity and speed of traditional 
technologies [31].  
 

 

Fig.11 Five-dimensional DT model as proposed in 
literature [31]. 
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Author (year) Application area Methodology Contribution Implementation  Limitations 

Sifat et al. 
(2024) [41] 

Grid network ML for state 
modeling with key 
features 

Developed a DT 
foundation for DTEG 
 

Applied to a microgrid Principal component 
only 

Jiang et al. 
(2022) [42] 

Smart gird, system 
level and 
subsystem  

A DT body of model 
OKDD is proposed 

supports hierarchical 
complex system 
building 
 
 

SG equipment: a 35 kV 
distribution network and a 
vacuum circuit breaker, 
110 kV substations 

lack of a functional 
application architectural 
model. 

Fernandes et al. 
(2022) [43] 

Distribution 
network 

3D asset modeling Physical asset virtual 
dynamic modelling 
using images 

Densest region of Brazil Interdisciplinary 
integration 

Shen et al. 
(2023) [44] 

Power system  Virtual Testbed 
Creation 

Testbeds allow 
realistic digital twin 
generation 

To accelerate 
development of DT-
enabled applications in 
power systems 

Not performed: DT 
adaptation, PT fault 
discovery, what-if 
scenario testing, online 
decision-making. 

De lópez diz et 
al. (2022) [45] 

Monitoring of three-
phase power 
electronics 
converters 

Particle swarm 
optimization and a 
genetic algorithm 

Attained a low-cost 
and robust parallel 
digital-twin model 

Application for a three Leg 
Neutral Point clamped 
converter is demonstrated 

Data accuracy 

Gui et al. (2023) 
[46] 

Hierarchical 
coordinated control 
strategy for PV 
inverters in the low 
voltage grid 

Automatic voltage 
regulation, VAR 
controller 

Optimizes PV inverter 
reactive power 
outputs and grid 
voltage. 

Low-voltage feeder 
located in Denmark 

Communication 
connection failures, 
cyber-physical power 
grid assaults, and outside 
attack vectors 

Yu et al. (2024) 
[47] 

Grid connected 
photovoltaic 
systems 

Swarm intelligence 
and grey wolf 
optimization 
algorithm 

Tracks parameter 
changes to monitor 
PV grid-connected 
inverter health  
 

PV system simulation, 
power forecast, and 
condition monitoring 

Estimation methods of 
coupling parameters 

Baboli et al. 
(2020) [48] 

Smart grid  Artificial Neural 
Networks 

 Analyses time-
varying load 
dynamics by system 
identification and 
nonlinear numerical 
optimization 

Distribution grid  Requirement analysis, 
Trade-off analysis 

Saad et al. 
(2020) [49] 

Power system 
components and 
the communication 
topology 

Amazon Web 
Service 

Both low-bandwidth 
and high-bandwidth 
DT replicated CPS live 
status precisely 

Cloud data management Data Dependency and 
scalability 

Peng et al. 
(2019) [50]   
 

DC-DC power 
converters 

PSO algorithm Non-Invasive 
Monitoring, 
Experimental 
Validation  

Capacitors and MOSFETs Measurement and 
limitation error 
 

Shajahan et al. 
(2022) [51] 

Power System 
Protection 

Deep learning-
based differential 
protection using 
Convolutional 
Neural Networks 
(CNNs) 

Developed a deep 
learning-based 
protection scheme 
that avoids feature 
engineering 

Simulated using 
MATLAB/Simulink and 
Python 

Real-time 
implementation 
challenges; 
generalization to multiple 
faults not tested 

Maslo et al. 
(2024) [52] 

Power System 
Training & 
Simulation 

Dispatcher 
Training Simulator 
(DTS), Dynamic 
Model of Electric 
System (DMES) 

Verified DMES 
against Digital Twin 
criteria for real-time 
simulation 

Used by Czech TSO with 
real SCADA 

Lack of full cyber-
physical integration and 
digital twin scalability 
beyond training 
simulators 
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IV. APPLICATIONS AND CHALLENGES OF 

DIGITAL TWIN 

A. Applications 

• Automation: Despite a growth in the application 
of DT principles, the majority of the current 
literature focuses on prototype testing and 
automobile production processes. The notion of 
the DT is an important facilitator of data-driven 
production. Important advantages include 
"increased productivity, reduced complexity, 
time savings, reduced cost, improved quality," 
as stated by the authors in [64]. Model-based 
systems engineering's functional representation 
of the vehicle is based on functional prototype 
twins wins. 

• Manufacturing:  The most recent developments 
in manufacturing are characterized by what is 
referred to as Industry 4.0, the fourth industrial 
revolution. By creating virtual replicas of their 
production lines and factories, DTs allow 
companies and industrial systems to test, 
improve, and optimize their operations in real 
time without interrupting output. 

• Education: As a result of the COVID-19 outbreak, 
students and teachers throughout the globe 
have scrambled to find ways to keep learning 
even when schools are on lockdown. A large 
number of institutions eventually adopted the DT 
idea for education, which enabled students from 
across the globe to participate in a whole new 
paradigm of learning, but initially, the problem 
was substantial since not all institutions had 
platforms to support a digitalized education 
process. Smart learning environments with 
integrated data mining tools [60], customized 
adaptive learning frameworks, and the 
integration of IoT technologies are just a few of 
the solutions that have been suggested for the 
deployment and enhancement of digital twins in 
education. 

• Smart Cities and Infrastructure: Using DTs in 
urban planning, building management, disaster 
response, and simulation of city infrastructure 
can optimize traffic flow, reduce congestion, and 
increase sustainability. Smart buildings also use 
DTs for energy efficiency, maintenance, and 
security. 

B. Challenges:  

1. Complexity and expense: Building and 
maintaining an electronic model of a power 
transformer might be a time-consuming and 
difficult task that calls for expert-level software 

and hardware. Therefore, it can be too expensive 
and not practical for certain power transformers, 
especially smaller or older ones. The software for 
creating the DT, the software for integrating it, 
and the expense of education and training are all 
variables that affect the total cost of the DT. 

2. Problems with communication networks: Faster 
and more efficient communication technologies 
like 5G are urgently needed. According to [67], 5G 
is essential for smart cities as it connects more 
devices, offers high-speed internet, enhances 
reliability, and saves energy. It also enables real-
time data sharing and improves operational 
efficiency for the DT. 

3. Concerning data availability and quality: For a DT to 
function effectively, real-time data is essential for 
accurate simulation and prediction. If the data 
used is outdated, incomplete, or low quality, the 
DT's accuracy may suffer. Additionally, without 
real-time data, its usefulness decreases. A key 
challenge in the DUET Digital Urban Twin project 
was collecting the required data. Limited access to 
federal government data and privately owned 
datasets created hurdles in acquiring the 
necessary information. 

4. Existing-system integration: To get most out of DTs, 
they can be combined with other systems like 
control and monitoring systems. However, this 
may require major system changes, which can be 
complicated and costly.  

 

V. CONCLUSION 
In recent years, DT technology has attracted 

substantial attention from both academia and industry. 
This technique is defined differently in the literature since 
it is used to describe diverse areas of study in different 
fields. The term "digital twin" refers to a system where 
data from both the physical and virtual parts of a machine 
are seamlessly integrated. In the aerospace and 
astronautics industries, NASA first used DT technology 
on the Apollo 13 lunar exploration mission and the 
Curiosity Mars Rover. The literature study demonstrates 
that digital twins are a rapidly expanding IT solution in 
many sectors due to their expanding scope and effect. By 
providing intelligent control, predictive analytics, and 
real-time monitoring, DT technology is quickly becoming 
an essential tool for updating power systems. Particularly 
important as power grids move towards distributed and 
renewable energy sources, DTs improve system 
dependability, efficiency, and flexibility by connecting the 
digital and physical realms. Digital twins are 
revolutionising grid operations and asset management 
with the help of technologies like the internet of things 
(IoT), AI, and cloud computing. However, there are still 
major obstacles to widespread adoption, including 
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complicated integration, huge data needs, and insecurity 
concerns. Future work should concentrate on creating 
safe data handling procedures, scalable systems, and 
standardised frameworks. In order to construct power 
networks that are smarter and more robust, DTs need to 
be further studied, collaborated with, and supported by 
regulators. 
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