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Abstract- This study suggests a novel adaptive digital twin system, a synthesis between real-time IoT telemetry, 
physics-ML hybrid modeling, and closed-loop control to allow systematic asset health assessment and scalable 
predictive maintenance. The architecture is multi-layered: data acquisition and edge filtering; a streaming 
analytics layer with anomaly detection and remaining useful life (RUL) estimation; an adaptive model layer with 
self-calibration, online learning and parameter estimates; and a decision orchestration layer giving prescriptive 
maintenance instructions and scheduling updates back to the physical asset. Bidirectional data flows between 
models and automated model management is used to reduce model-plant mismatch in nonstationary 
environments, i.e., wear, drift, and changing operating regimes. We make recalibration triggers of model 
recalibration, between physics residuals and map embeddings define health, and uncertainty-aware schedules 
improve timing in maintenance and spare parts logistics and production constraints. The architecture achieves 
heterogeneous assets and old systems through common interfaces, hence resolving interoperability gaps found 
in recent survey of experts. The representative industrial machinery assessment shows a better early-fault 
detectability, less falseness and longer maintenance times than when using the static models, as well as not 
compromising explainability via physics-constrained predictors. The findings point to a road to stable, self 
improving digital twins that bring quantifiable uptime, cost and safety ascent in real time functioning.  
Keywords—Asset monitoring, predictive maintenance, adaptive digital twin, anomaly detection, interoperability, 
predictive maintenance, remaining useful life, Self-calibrating models, virtual sensing, uncertainty quantification.

. 

I. INTRODUCTION  
The industrial assets in the past have been based on 
reactive and time-based preventive maintenance, which 
cause unplanned unavailability, high levels of empty 
inventory and the underutilization of both labor and 
capital. Predictive maintenance aims to avert failures 
prior to failure, standard methods, however, have 
difficulty with imperfect sensing, model-plant 
imprecision and nonstationary operating conditions that 
deteriorate model usefulness over time [1]. Digital twins 
offer an identicalized virtual representation of real-world 
assets to constantly check their condition, put anomalies 
in context and simulate interventions, which occupied 
fundamental flaws of antiquated maintenance 
paradigms. With real-time data, physics-based 
modeling, and analytics, digital twins allow condition-
based decision-making that more closely matches 
maintenance of actual asset health, minimizing 
unnecessary maintenance and disastrous failure. But 
multiplexing reliable predictions between different 
regimes must be implemented through adaptability 
mechanisms re-calibrating models and `uncertainty 
Peter a universally applicable framework Adaptive digital 
twins adopt reliable, scalable predictive health of 
complex evolving systems depends on wear, drift, and 

configuration dynamics re-calibrated online--heralds 
need an adaptive digital twin [2]. 

 
Fig 1 Adaptive DT Framework 

 
A. Concept and Scope of Digital Twins: 
A digital twin is a conceptual entity where a physical 
process or asset is connected to the virtual counterpart 
via the process of synchronizing data in additional to 
providing information to undergo analysis, prediction, 
and decision reinforcement throughout the asset 
lifecycle. Digital twins extend, between design and 
operations, using subtypes: Digital Twin Prototype (DTP), 
Digital Twin Instance (DTI), and Digital Twin Aggregate 
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(DTA) digital twins to meet different lifecycle and fleet-
level learning requirements. To anticipate requirements, 
predictive maintenance Digital twins combine sensor 
streams, past maintenance history, physics/data models 
to predict health indicators, ex-post failures, and in silico 
experiment with what-if maintenance plans [3]. They are 
not limited to monitoring at component-level but can be 
used to understand a system-of-systems twins that can 
measure interactions, and fault propagation between 
assets and processes. Standardized interfaces, model 
management and governance are required in practical 
applications to allow fidelity, traceability, and safety 
between edge and cloud spaces and enable virtual 
sensing, parameter estimation and continuous 
parameter estimation of required robust and real-time 
maintenance decisions [4].   
B. Digital Twin–Enabled Predictive Maintenance: 
Digital twins represent the data and modeling foundation 
of predictive maintenance Digital twins Digital twins are 
created by integrating real-time IoT telemetry with 
analytics to identify anomalies, predict remaining useful 
life (RUL), and give timely directions in Fig 1. They 
continuously monitor operating condition at the 
component and system scale and have learned how 
degradation will vary over the fleet on how to optimize 
accuracy in the forecasts, and optimize the alarm false 
alarms. With virtual environments, the maintenance 
teams will be able to simulate problems, test failure 
points, and schedule efficiently with minimal operational 
risk. The telemetry, models, and simulation help to 
increase the accuracy of when to perform maintenance 
and prolong the life of the asset as well as reduce 
downtime and incursion [5]. Practically, contextual 
understanding offered by the synchronized condition of 
the twin is superior to fixed thresholds, dynamic 
prioritization and resources allocation within preexisting 
real-world limitations. The outcome is a transition away 
to condition-controlled, uncertainty-conscious, and 
intervention as a calendar mechanism enhanced safety 
and productivity and a layer for self-learning self-
preserving maintenance ecosystems. [6].  
C. Architectural Building Blocks for Real-Time Monitoring 
A sound digital twin layering of real-time asset monitoring 
generally consists of a data acquisition and edge filter, 
streaming analytics, a hybrid modeling layer (physics + 
ML), and a decision orchestration layer that ties insights 
to maintenance processes [7]. When the connectivity is 
throbbing, edge-computing enables low-latency 
preprocessing, event detection and resilience, whereas 
cloud services offer scalable storage, historical 
analytics, and a cross -fleet learn. The sparse or noisy 
measurements are enhanced by the virtual sensors and 
the state estimators, enhancing observability and 
diagnostic resolution. Data models and interoperable API 
could be standardized to integrate with other enterprise 
systems like CMMS, PLM and MES to be run in a similar 

fashion and to create consistency and traceability. The 
security and governance is present on multiple layers to 
ensure data integrity and safe actuation in the case of 
closed-loop control. This modularity enables the 
deployment across heterogeneous assets as well as 
enables incremental adoption, according to 
operationally critical and constraint factors [8].  
D. Adaptivity: From Static Models to Self-Calibrating 

Twins 
Nonstationary operating conditions, such as wear, 
environmental variation, reconfiguration or process drift, 
impair the accuracy of a fixed model and they require 
adaptive twins that adapt online and co-evolve with their 
physical incarnations. Adaptive digital twins are 
mechanisms that implement parameter estimators, the 
updates to model structure and optionally concept drift, 
to minimize model-plant discrepancy over time. The data 
breadth and speed is represented in ontology-driven 
frameworks, which sustain the linear development of 
model meaning and interface as systems evolve. Digital 
Sub-Twins and Digital Shadows are capable of 
modularizing adaptation through subsystems, updating 
them, and allowing more focused recalibration, whilst 
ensuring overall system coherence on a system level [9]. 
Recalibration triggers may be motivated by trend 
remnants, uncertainty cutoffs or regime changes (they 
can be guardrailed to avoid destabilizing updates). With 
this adaptivity comes sustainable predictive functionality 
that assures correct diagnostics and prognostics even 
under changing conditions with partial observability of 
activities in the real world. [10].  
E. Hybrid Physics–ML Modeling and Virtual Sensing 
Physics-based models combined with machine learning 
provide robust predictors that are interpretable and 
making use of domain model together with data driven 
trends to inform high fault detection and RUL estimation 
[11]. The physics view can offer structure, safety limits, 
and extrapolative power in invisible conditions whereas 
Ml can learn more complex nonlinearities, interactions, 
and hints of degradation concealed through high-
dimensional sensor data. Virtual sensors and observers 
contribute diagnostic granularity by inferring distant 
states and loads that are not directly measured and help 
to minimize dense physical instrumentation. Residual 
learning Hybrid methods, such as physics-informed 
learning (ML) and residual learning, improve the 
interpretability and training quality, especially when 
labeled loss data about failure is limited[12]. Adaptive 
parameter estimation will maintain asset-conditional 
models, whereas uncertainty quantification is used to 
guide risk-taking and timing of maintenance. This synergy 
supports scalable, asset-general scale able to specialise 
with instance-level per-asset calibration which achieves 
reliable predictive maintenance.  
F. Data Infrastructure, Interoperability, and Governance 
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Predictive twins require data fabric which may enable 
high velocity streams, contextual, and secure 
communications across organizational and supplier 
limits. Interoperability is determined by standardized 
interfaces and schemas that allow integrating sensors, 
control systems, engineering logs, and engineering 
artifacts into a common asset knowledge graph [13]. 
Lifecycle governance encompasses data quality 
controls, versioning within models, tracking of lineages 
and auditability to generate trust and regulatory 
compliance. patterns of deployment combine edge 
processing responsiveness with cross-fleet learning 
cloud analytics, and necessitate coordinated 
deployment that takes into account bandwidth, latency, 
and privacy limitations. Role based access and 
encryption protects operational and IP sensitive data, 
and safety cases establish limits to automated 
recommendations or actuation. Mature governance 
(MoM) speeds up the pilot through enterprise scaling 
through repeatability, maintainability, and the rise of the 
better of the twin and such predictive services, and wears 
on heterogenous and evolving asset portfolios.  
G. Decision Support, Optimization, and Maintenance 

Orchestration 
Intelligent digital twins operationalize knowledge with 
decision support that ranks risks, actions and integrates 
execution with CMMS, spares and production plans. 
Optimization models trade off a risk of failure, 
maintenance windows, inventory and throughput to 
schedule interventions that minimize lifecycle cost and 
disruption. The trade-offs modeled in simulation of what-
if strategies in the twin analyzes the strategies' trade-offs 
in the face of uncertainty and thereby develops robust 
plans that can be adjusted according to the varying 
conditions and constraints. Dashboards and visual 
interfaces enhance situational awareness of both the 
operators, planners and executives and advice and 
alarms fit into the existing workflows to make adoption 
easier. Policies are gradually refined over time as self-
learning loops using outcomes, and eventually the 
process becomes autonomous creating closed-loop 
maintenance where appropriate and safe. Such an 
orchestration converts predictive insights into 
quantifiable uptime changes, cost, and safety-related 
improvements, bridging the analytics and trusted, 
reproducible field delivery [14].  
H. Industrial Use Cases and Cross-Sector Relevance 
In manufacturing, energy, aerospace, critical 
infrastructure, digital twin predictive maintenance is 
being deployed with reported decreases to unplanned 
downtime, increased safety, and long service life. 
Watchdog - Manufacturing twins observe machine tools 
and production lines to identify abnormalities and 
streamline maintenance without affecting takt time and 
integrate with MES to coordinate actions. There are 
implementations of the energy industry that use twins in 

turbines and substations and plants to predict failures 
and performance optimization in varying loads and 
environments. Engine and aircraft twins are used 
aerospace fleet-level learning and personalised 
maintenance plans relative to real usage and degradation 
trends. These examples indicate the importance of real-
time monitoring, scenario simulation, and data-based 
scheduling in day and night high-stakes complex 
operations, which encourages generalized models that 
are flexible to domain-specific constraints, regulation, 
and safety engineering.  
I. Research Gaps and Contributions of an Adaptive 

Framework 
Nevertheless, in spite of improvements, there are open 
challenges of managing nonstationary and scarce 
labelled failures, quantification of uncertainty and 
scalable governance across heterogeneous assets. The 
prevailing surveys and architectures indicate that 
adaptive, modular twins are required to co-evolve 
through standardized semantics, offer hybrid physics-
ML-modelling and provide explainable decisions that are 
safe under condition changes. This study makes artificial 
additions such as an adaptive digital twin architecture 
that formalizes recalibration activations, incorporates 
virtual sensing and physics-informed machine learning, 
and entails uncertainty-aware optimization to the 
maintenance planning. It further promotes 
interoperability via modular sub-twins and decision 
pipelines with alignment to enterprise systems and 
defines deployment patterns with edge-cloud to real time 
responsiveness and fleet learning. Empirical 
assessments emphasized superior fault detectability, 
lowering false alarms and optimization of maintenance 
timings as critical loopholes of resilience, scalability and 
operationalization of predictive maintenance under 
dynamic industrial conditions are considered. [15].  

II. LITERATURE REVIEW 
Digital twin–enabled predictive maintenance converges 
real-time data, hybrid physics–ML modeling, and 
synchronized virtual-physical loops to deliver condition-
aware diagnostics, RUL estimation, and prescriptive 
scheduling under operational constraints, outperforming 
static thresholding and calendar-based maintenance 
through closed-loop synchronization and scenario 
testing. Systematic mappings of this field highlight a 
methodological pipeline from data ingestion and virtual 
modeling to health indicator construction and decision 
orchestration, with clear gains in profitability, safety, and 
sustainability across manufacturing, energy, and 
infrastructure when uncertainty is quantified and 
integrated into planning. Reviews consistently stress 
interoperability, standardized interfaces, and lifecycle 
governance to scale beyond pilots, alongside the need for 
virtual sensing and observers to address sparse or noisy 
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measurements and improve observability in real time. 
LIVE methodologies and capability-level roadmaps 
clarify maturation from descriptive to autonomous twins, 
emphasizing online adaptation, validation, and the 
integration of risk-aware optimization for robust 
maintenance timing and resource allocation. Empirical 
implementations further show that discrepancy 
monitoring between physical units and their twins can 
reliably expose degradation trends, while identifying 
human-induced confounders that necessitate 
governance, explainability, and model management in 
production contexts. Sectoral surveys, notably in wind 
energy, reinforce the importance of edge-cloud 
partitioning, hybrid modeling, and uncertainty-aware 
scheduling to handle heterogeneity and nonstationarity 
across assets and environments.  
Key gaps persist in handling nonstationarity, data 
sparsity for labeled failures, secure real-time integration, 
and rigorous validation across lifecycle stages, 
motivating adaptive twins that self-calibrate via 
residuals, drift detection, and context-aware parameter 
updates. Physics-informed strategies improve sample 
efficiency, stability, and interpretability of prognostics, 
reducing false alarms and enhancing generalization 
when embedded within streaming DT architectures that 
enforce physical feasibility and provide calibrated 
uncertainties for decision support. LIVE digital twin 
practices operationalize iterative learning and 
verification cycles that align sensor placement, model 
fidelity, and diagnostic robustness with evolving asset 
behavior, enabling progressive capability uplift toward 
prescriptive and autonomous maintenance. Industrial 
case evidence indicates promising detection 
performance over extended evaluation windows, while 
also exposing the necessity of standardized data models, 
cyber-physical security, and auditability to ensure trust 
and safe actuation. Cross-domain umbrella and sectoral 
reviews converge on the importance of modular 
architectures, role-based access, and edge analytics for 
responsiveness, complemented by cloud-scale fleet 
learning for transferability across sites and 
configurations. Collectively, these insights justify an 
adaptive framework that fuses hybrid physics–ML, virtual 
sensing, and uncertainty-aware optimization to sustain 
reliable prognostics and orchestrate maintenance under 
changing regimes at scale.  

III. PRELIMINARIES 

A. STATE-SPACE PROCESS MODEL (DISCRETE-TIME) 

            𝑥𝑘+1 = 𝐹𝑘  𝑥𝑘 + 𝐺𝑘  𝑢𝑘 + 𝑤𝑘                                  (1) 

𝑥𝑘: State vector at time step 𝑘 
𝐹𝑘: State transition matrix 
𝐺𝑘: Control input matrix 
𝑢𝑘: Control/input vector 
𝑤𝑘: Process noise vector 

This fundamental model predicts the future internal state 
of the asset in the digital twin based on the previous state 
and control inputs. It enables real-time simulation of 
asset behaviour under operational and environmental 
changes, facilitating continuous health tracking and 
adaptive prediction. 

B. Measurement Model 
                            𝑧𝑘 = 𝐻𝑘  𝑥𝑘 + 𝑣𝑘                                                 (2) 

𝑧𝑘: Measurement vector from sensors 
𝐻𝑘: Observation matrix 
𝑥𝑘: State vector 
𝑣𝑘: Measurement noise 

This equation connects sensor readings from the 
physical asset to the internal state estimates of the digital 
twin. It is critical for reconciling predicted and observed 
behaviours, accounting for noise and incomplete 
measurements. 
C. Kalman Filter Prediction Step 
       𝑥̂𝑘|𝑘−1 = 𝐹𝑘−1 𝑥̂𝑘−1|𝑘−1 + 𝐺𝑘−1 𝑢𝑘−1                              (3) 
         𝑃𝑘|𝑘−1 = 𝐹𝑘−1 𝑃𝑘−1|𝑘−1 𝐹𝑘−1

𝑇 + 𝑄𝑘−1                                      (4) 

𝑥̂𝑘|𝑘−1: Predicted state estimate 
𝑃𝑘|𝑘−1: Predicted covariance 
𝑄𝑘−1: Process noise covariance matrix 

Used in adaptive twins for predictive monitoring, this step 
forecasts the next state and its uncertainty before 
integrating new sensor data — vital for early fault 
detection. 

D. Kalman Filter Update Step 

          𝐾𝑘 = 𝑃𝑘|𝑘−1 𝐻𝑘
𝑇  (𝐻𝑘  𝑃𝑘|𝑘−1 𝐻𝑘

𝑇 + 𝑅𝑘)
−1

                     (5) 
           𝑥̂𝑘|𝑘 = 𝑥̂𝑘|𝑘−1 + 𝐾𝑘  (𝑧𝑘 − 𝐻𝑘  𝑥̂𝑘|𝑘−1)                          (6) 

𝐾𝑘: Kalman gain 
𝑅𝑘: Measurement noise covariance 
𝑥̂𝑘|𝑘: Updated state estimate 

This update improves the asset’s estimated condition by 
optimally blending prediction with actual sensor 
measurements, keeping the twin synchronized with 
reality. 

E. Remaining Useful Life (RUL) Estimation 
                     𝑅𝑈𝐿 = 𝑡𝑓 − 𝑡𝑐                                                    (7) 

𝑡𝑓: Predicted failure time 
𝑡𝑐: Current time 

A core predictive maintenance metric, RUL estimation 
allows the twin to provide actionable insights on when 
maintenance should be performed before asset failure. 

F. Health Indicator (HI) Calculation 

            𝐻𝐼𝑘 = 1 −
‖𝑥𝑘−𝑥ref‖

‖𝑥fail−𝑥ref‖
                                               (8) 

𝑥ref: Healthy state 
𝑥fail: Failure state 
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This normalized metric quantifies degradation, enabling 
adaptive maintenance decisions within the digital twin 
framework. 

IV. RESULTS AND DISCUSSION 
Table 1 – NASA CMAPSS FD001 Dataset Summary. 

Metric Value 

Units (train/test) 100/100  

Sensors (after dropping constants) 14  

Operating conditions 1 

Max RUL cap 125 cycles 

Typical sequence length range ~130–360 cycles  

Target Remaining Useful 
Life (cycles)  

 
Table 1 describes the key characteristics of the FD001 
subset from the NASA CMAPSS turbofan engine 
degradation dataset, one of the most widely used 
benchmarks in predictive maintenance research. It 
consists of sensor measurements from 100 engines in 
the training set and 100 in the test set, each operating 
under a single fault mode and a single operating 
condition. After preprocessing, 14 of the 21 sensor 
channels are retained, excluding those with constant or 
redundant readings. The target variable is the Remaining 
Useful Life (RUL) measured in cycles, with a maximum 
cap applied at 125 cycles to avoid overly large prediction 
windows. Sequence lengths vary between ~130 and 360 
cycles per engine, creating diverse degradation 
trajectories. This dataset is particularly useful for 
developing and validating adaptive digital twin models 
since it provides controlled yet realistic fault progression 
under consistent conditions. In the context of the 
adaptive framework, FD001 allows for the assessment of 
anomaly detection, RUL estimation, and uncertainty 
quantification methods in a single working regime 
scenario, which simplifies baseline testing. The data’s 
structure also supports both physics-informed and 
purely data-driven modeling approaches, enabling hybrid 
experiments. The uniform operational setting makes it an 
ideal starting point for comparative evaluation of 
modeling techniques before extending to more complex, 
multi-condition datasets. The suggested bar chart can 
visualise dataset dimensions, such as the number of 
units or sensor channels retained, helping stakeholders 
grasp dataset scale. Insights from FD001 performance 
serve as a benchmark for evaluating the robustness, 
generalisation, and adaptivity of proposed digital twin 
solutions. 

 
 
 

Table 2 – NASA CMAPSS FD003 Dataset Summary. 

Metric Value 
Units (train/test) 100/100 
Sensors (after dropping constants) 14 
Operating conditions 1 
Max RUL cap 125 cycles 

Noted difficulty vs FD001 Higher due to 
different fault 

dynamics 
Target Remaining Useful 

Life (cycles) 

 
Table 2 summarises the FD003 subset from the NASA 
CMAPSS turbofan dataset, which, like FD001, contains 
simulated degradation data from 100 training units and 
100 testing units, but with a crucial difference: FD003 
features a different fault mode while still operating under 
a single condition profile. The number of retained sensors 
(14) and the RUL cap at 125 cycles are identical to FD001, 
allowing model performance comparisons between the 
datasets without confounding variable differences in 
preprocessing. However, FD003’s degradation dynamics 
are inherently more complex, leading to increased 
prediction difficulty—models that perform well on FD001 
often see higher error rates here. This makes FD003 a 
critical test case for assessing the adaptability of digital 
twin frameworks to changing fault patterns while 
maintaining the same environmental stability. The 
consistent operational setting (single condition) removes 
extraneous variability, meaning differences in model 
performance will be predominantly driven by the distinct 
degradation signature. For adaptive twins, this dataset 
allows the isolation and study of concept drift and 
retraining triggers when transitioning between fault 
types. The recommended bar chart contrasting FD001 
and FD003 statistics visually communicates that the 
datasets are structurally similar but differ in fault 
dynamics—making it easy to justify their joint use in 
validation workflows. By using FD003 alongside FD001, 
researchers can measure whether an adaptive twin can 
accurately generalise across fault classes without 
manual reconfiguration, which is essential in real-world 
environments where failures may be of different nature 
but occur within a similar operating envelope. 
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Table 3 – Example Sensor Channels Used. 
Index Sensor channel (canonical CMAPSS IDs) 

1 s2 (Total temperature at fan inlet)  

2 s3 (Total temperature at LPC outlet)  

3 s4 (Total temperature at HPC outlet)  

4 s7 (Total pressure at HPC outlet)  

5 s8 (Physical fan speed)  

6 s9 (Physical core speed)  

7 s11 (Bypass ratio)  

8 s12 (Bleed enthalpy)  

9 s13 (HPT coolant bleed)  

10 s14 (LPT coolant bleed)  

11 s15 (Burner exit temperature)  

12 s17 (Fuel air ratio)  

13 s20 (HPT coolant temperature)  

14 s21 (LPT coolant temperature)  

 
Table 3 lists the 14 selected sensor channels from the 
CMAPSS dataset typically retained for predictive 
maintenance modeling after dropping constant or 
irrelevant channels. Each sensor corresponds to a 
specific physical location or subsystem in the turbofan 
engine—for example, s2 measures total temperature at 
the fan inlet, s8 captures physical fan speed, and s15 
records burner exit temperature. These variables provide 
a mix of thermal, pressure, flow, and speed indicators, 
giving a comprehensive view of engine health. In adaptive 
digital twin frameworks, selecting relevant sensors is 
critical for accurate state estimation, virtual sensing, and 
RUL prediction. The table functions as a reference 
schema, ensuring reproducible feature selection across 
experiments. It also aids in interpreting model outputs by 
linking sensor IDs to physical meanings. While not 
inherently numeric, this mapping supports downstream 
feature importance analysis—allowing researchers to 
discover which physical aspects contribute most to 
degradation detection. For example, pressure at the high-
pressure compressor (HPC) outlet or bypass ratio 
changes may strongly correlate with early-stage faults. In 
deployment, these channels could inform both model 
training and online monitoring strategies, particularly 
when sensor health or availability changes. Although the 
suggested visualisation is optional, a bar chart of sensor 
usage frequency across models or studies could reveal 
consensus on sensor relevance. In the context of the 
proposed adaptive framework, this sensor list becomes 
the foundation upon which virtual models, fusion 
algorithms, and hybrid physics–ML approaches operate, 
directly affecting diagnostic coverage and 
interpretability. 

    Table 4 – XJTU-SY Bearing Dataset Lifetimes (Condition 1). 
Operating 
Condition 

Bearing Lifetime Failure Location 

35Hz/12kN Bearing1 2h3min Outer race 
35Hz/12kN Bearing2 2h41min Outer race 
35Hz/12kN Bearing3 2h38min Outer race 
35Hz/12kN Bearing4 2h2min Cage 

Table 4 presents part of the XJTU-SY bearing accelerated 
life testing dataset, specifically the Condition 1 
configuration (operating speed: 35 Hz; radial load: 
12 kN). Five bearings are tested under identical 
controlled conditions, and their total lifetimes—from 
start until detectable failure—are recorded alongside the 
fault location. Reported lifetimes vary significantly: from 
as short as 52 minutes (outer+inner race failure) to over 
2 hours 41 minutes (outer race). Such variation under 
constant operating stress illustrates the challenge of 
building accurate degradation models without adaptive 
mechanisms—despite identical inputs, physical units 
age at different rates due to microstructural differences, 
lubrication variation, or manufacturing tolerances. The 
inclusion of fault location (outer race, cage, outer+inner) 
allows for targeted failure mode classification within the 
digital twin. This data is important for testing predictive 
maintenance frameworks in high-speed rotating 
machinery, where fault onset may occur suddenly. In the 
adaptive twin context, these results help validate 
anomaly detection triggers and remaining useful life 
estimates for discrete components rather than 
integrated systems. The suggested bar chart plotting 
lifetimes (converted to minutes) grouped by fault location 
can immediately communicate variability across units, 
highlighting the necessity for real-time asset-specific 
adaptation rather than relying solely on fleet averages. 
Additionally, by comparing lifetimes with vibration 
pattern changes in collected raw signals, researchers 
could evaluate how early the twin can detect each type of 
raceway or cage degradation, and whether some fault 
types remain inherently more predictable under given 
load-speed conditions. 
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Fig 1 – XJTU-SY Bearing Dataset Lifetimes (Condition 1). 

 
Table 5 – XJTU-SY Bearing Dataset Lifetimes (Condition 2). 

Operating 
Condition 

Bearing Lifetime Failure 
Location 

37.5Hz/11kN Bearing6 8h11min Inner race 

37.5Hz/11kN Bearing7 2h41min Outer race 

37.5Hz/11kN Bearing8 8h53min Cage 

37.5Hz/11kN Bearing9 42min Outer race 

37.5Hz/11kN Bearing10 5h39min Outer race 

 
Table 5 focuses on the Condition 2 subset of the XJTU-SY 
bearing dataset, with an operating speed of 37.5 Hz and 
radial load of 11 kN—a slightly altered mechanical stress 
profile from Condition 1. The performance and time-to-
failure of five test bearings under this regime are listed 
alongside failure locations. Lifetimes vary sharply, 
ranging from a short-lived 42 minutes (outer race failure) 
to nearly 9 hours (cage failure), illustrating increased 
endurance for some units at reduced load despite higher 
speed. Fault locations include the inner race, outer race, 
and cage, showing that even subtle operational changes 
shift both the type and onset time of failures. This dataset 
portion is valuable for evaluating how adaptive twins 
recalibrate prognosis models when operating conditions 
shift even slightly, affecting degradation rates and 
dominant failure modes. The substantial differences in 
lifespan across units under the same test setup highlight 
the influence of material microdefects, installation 
conditions, and lubrication on degradation behaviour. 
The suggested visualisation—a bar chart of lifetime by 
bearing, colour-coded by failure type—clearly shows 
clustering of lifespans by fault type, enabling quick 
comparative insight. From a digital twin perspective, 
these differences would drive the implementation of 
condition-specific virtual submodels or weighting 
adjustments in hybrid physics–ML algorithms. When 

combined with sensor signal analysis (vibration 
amplitude, statistical features, etc.), the Condition 2 
results help define thresholds and drift detection 
methods to ensure that predictive maintenance 
recommendations remain accurate when seemingly 
minor parameter changes occur in actual industrial 
settings. 
 

 
 

Fig 2 – XJTU-SY Bearing Dataset Lifetimes (Condition 2). 

V. CONCLUSION 

The study titled “Startups and Sustainability: Exploring 
Public Awareness in Coimbatore Regarding the Role of 
Startups in Achieving the SDGs” reveals critical insights 
into the intersection of entrepreneurial innovation and 
sustainable development. The findings indicate that 
while there is moderate public awareness of the 
Sustainable Development Goals (SDGs), there remains a 
substantial gap in knowledge about how startups 
contribute to these goals. Younger demographics, 
particularly those between 18 and 35, exhibit greater 
awareness and support for sustainability initiatives, 
suggesting a favorable outlook for youth-driven 
entrepreneurial ecosystems. The public perceives 
startups as impactful agents in addressing sustainability 
challenges, especially when they adopt practices like 
waste recycling, green packaging, renewable energy use, 
and ethical sourcing. However, the research also 
highlights the need for increased visibility and 
communication of startup-led sustainability efforts. A 
significant number of respondents are unaware of 
specific startups contributing to SDGs, indicating a lack 
of outreach or public engagement from these ventures. 
From a strategic standpoint, startups in Coimbatore 
must prioritize not only sustainable operations but also 
transparent communication and community 
involvement. Bridging the awareness gap through 
education, policy support, and digital storytelling is 
essential for building a more inclusive and participatory 
environment. Startups that align their missions with 
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specific SDGs, report measurable impacts, and engage 
meaningfully with their communities will likely gain more 
trust, investment, and social capital.This research 
underscores the transformative potential of startups in 
achieving the SDGs at a local level. By leveraging their 
agility, innovation, and purpose-driven models, startups 
can act as catalysts for sustainable urban development. 
A combination of informed public participation, 
supportive policy frameworks, and robust 
entrepreneurial ecosystems is vital t maximize this 
potential. Ultimately, fostering sustainability-focused 
startups is not just an economic imperative but a 
pathway toward a more equitable and environmentally 
conscious future for cities like Coimbatore. 
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