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Abstract- This study suggests a novel adaptive digital twin system, a synthesis between real-time loT telemetry,
physics-ML hybrid modeling, and closed-loop control to allow systematic asset health assessment and scalable
predictive maintenance. The architecture is multi-layered: data acquisition and edge filtering; a streaming
analytics layer with anomaly detection and remaining useful life (RUL) estimation; an adaptive model layer with
self-calibration, online learning and parameter estimates; and a decision orchestration layer giving prescriptive
maintenance instructions and scheduling updates back to the physical asset. Bidirectional data flows between
models and automated model management is used to reduce model-plant mismatch in nonstationary
environments, i.e., wear, drift, and changing operating regimes. We make recalibration triggers of model
recalibration, between physics residuals and map embeddings define health, and uncertainty-aware schedules
improve timing in maintenance and spare parts logistics and production constraints. The architecture achieves
heterogeneous assets and old systems through common interfaces, hence resolving interoperability gaps found
in recent survey of experts. The representative industrial machinery assessment shows a better early-fault
detectability, less falseness and longer maintenance times than when using the static models, as well as not
compromising explainability via physics-constrained predictors. The findings point to a road to stable, self
improving digital twins that bring quantifiable uptime, cost and safety ascentin real time functioning.
Keywords—Asset monitoring, predictive maintenance, adaptive digital twin, anomaly detection, interoperability,
predictive maintenance, remaining useful life, Self-calibrating models, virtual sensing, uncertainty quantification.

configuration dynamics re-calibrated online--heralds

need an adaptive digital twin [2].
I. INTRODUCTION

The industrial assets in the past have been based on m

reactive and time-based preventive maintenance, which
cause unplanned unavailability, high levels of empty
inventory and the underutilization of both labor and

capital. Predictive maintenance aims to avert failures EH
prior to failure, standard methods, however, have SENSORS
difficulty with imperfect sensing, model-plant

imprecision and nonstationary operating conditions that

deteriorate model usefulness over time [1]. Digital twins ; ‘
offer an identicalized virtual representation of real-world |OT DEVICES ADAPTIVE

DATA SOURCE

assetsto constantly checktheir condition, putanomalies DIGITAL TWIN Maintenance
in context and simulate interventions, which occupied m FRAMEWORK windows
fundamental flaws of antiquated maintenance

paradigms. With real-time data, physics-based HISTORICAL DATA
modeling, and analytics, digital twins allow condition-
based decision-making that more closely matches
maintenance of actual asset health, minimizing
unnecessary maintenance and disastrous failure. But
multiplexing reliable predictions between different
regimes must be implemented through adaptability
mechanisms re-calibrating models and " uncertainty
Peter a universally applicable framework Adaptive digital
twins adopt reliable, scalable predictive health of
complex evolving systems depends on wear, drift, and

Fig 1 Adaptive DT Framework

A. Concept and Scope of Digital Twins:

A digital twin is a conceptual entity where a physical
process or asset is connected to the virtual counterpart
via the process of synchronizing data in additional to
providing information to undergo analysis, prediction,
and decision reinforcement throughout the asset
lifecycle. Digital twins extend, between design and
operations, using subtypes: Digital Twin Prototype (DTP),
Digital Twin Instance (DTI), and Digital Twin Aggregate
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(DTA) digital twins to meet different lifecycle and fleet-
level learning requirements. To anticipate requirements,
predictive maintenance Digital twins combine sensor
streams, past maintenance history, physics/data models
to predict health indicators, ex-post failures, and in silico
experiment with what-if maintenance plans [3]. They are
not limited to monitoring at component-level but can be
used to understand a system-of-systems twins that can
measure interactions, and fault propagation between
assets and processes. Standardized interfaces, model
management and governance are required in practical
applications to allow fidelity, traceability, and safety
between edge and cloud spaces and enable virtual
sensing, parameter estimation and continuous
parameter estimation of required robust and real-time
maintenance decisions [4].

B. Digital Twin-Enabled Predictive Maintenance:

Digital twins represent the data and modeling foundation
of predictive maintenance Digital twins Digital twins are
created by integrating real-time loT telemetry with
analytics to identify anomalies, predict remaining useful
life (RUL), and give timely directions in Fig 1. They
continuously monitor operating condition at the
component and system scale and have learned how
degradation will vary over the fleet on how to optimize
accuracy in the forecasts, and optimize the alarm false
alarms. With virtual environments, the maintenance
teams will be able to simulate problems, test failure
points, and schedule efficiently with minimal operational
risk. The telemetry, models, and simulation help to
increase the accuracy of when to perform maintenance
and prolong the life of the asset as well as reduce
downtime and incursion [5]. Practically, contextual
understanding offered by the synchronized condition of
the twin is superior to fixed thresholds, dynamic
prioritization and resources allocation within preexisting
real-world limitations. The outcome is a transition away
to condition-controlled, uncertainty-conscious, and
intervention as a calendar mechanism enhanced safety
and productivity and a layer for self-learning self-
preserving maintenance ecosystems. [6].

C. Architectural Building Blocks for Real-Time Monitoring
A sound digital twin layering of real-time asset monitoring
generally consists of a data acquisition and edge filter,
streaming analytics, a hybrid modeling layer (physics +
ML), and a decision orchestration layer that ties insights
to maintenance processes [7]. When the connectivity is
throbbing, edge-computing enables low-latency
preprocessing, event detection and resilience, whereas
cloud services offer scalable storage, historical
analytics, and a cross -fleet learn. The sparse or noisy
measurements are enhanced by the virtual sensors and
the state estimators, enhancing observability and
diagnostic resolution. Data models and interoperable API
could be standardized to integrate with other enterprise
systems like CMMS, PLM and MES to be run in a similar
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fashion and to create consistency and traceability. The
security and governance is present on multiple layers to
ensure data integrity and safe actuation in the case of
closed-loop control. This modularity enables the
deployment across heterogeneous assets as well as
enables incremental  adoption, according to
operationally critical and constraint factors [8].

D. Adaptivity: From Static Models to Self-Calibrating

Twins

Nonstationary operating conditions, such as wear,
environmental variation, reconfiguration or process drift,
impair the accuracy of a fixed model and they require
adaptive twins that adapt online and co-evolve with their
physical incarnations. Adaptive digital twins are
mechanisms that implement parameter estimators, the
updates to model structure and optionally concept drift,
to minimize model-plant discrepancy over time. The data
breadth and speed is represented in ontology-driven
frameworks, which sustain the linear development of
model meaning and interface as systems evolve. Digital
Sub-Twins and Digital Shadows are capable of
modularizing adaptation through subsystems, updating
them, and allowing more focused recalibration, whilst
ensuring overall system coherence on a system level [9].
Recalibration triggers may be motivated by trend
remnants, uncertainty cutoffs or regime changes (they
can be guardrailed to avoid destabilizing updates). With
this adaptivity comes sustainable predictive functionality
that assures correct diagnostics and prognostics even
under changing conditions with partial observability of
activities in the real world. [10].

E. Hybrid Physics—-ML Modeling and Virtual Sensing
Physics-based models combined with machine learning
provide robust predictors that are interpretable and
making use of domain model together with data driven
trends to inform high fault detection and RUL estimation
[11]. The physics view can offer structure, safety limits,
and extrapolative power in invisible conditions whereas
MLl can learn more complex nonlinearities, interactions,
and hints of degradation concealed through high-
dimensional sensor data. Virtual sensors and observers
contribute diagnostic granularity by inferring distant
states and loads that are not directly measured and help
to minimize dense physical instrumentation. Residual
learning Hybrid methods, such as physics-informed
learning (ML) and residual learning, improve the
interpretability and training quality, especially when
labeled loss data about failure is limited[12]. Adaptive
parameter estimation will maintain asset-conditional
models, whereas uncertainty quantification is used to
guide risk-taking and timing of maintenance. This synergy
supports scalable, asset-general scale able to specialise
with instance-level per-asset calibration which achieves
reliable predictive maintenance.

F. Data Infrastructure, Interoperability, and Governance
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Predictive twins require data fabric which may enable
high velocity streams, contextual, and secure
communications across organizational and supplier
limits. Interoperability is determined by standardized
interfaces and schemas that allow integrating sensors,
control systems, engineering logs, and engineering
artifacts into a common asset knowledge graph [13].
Lifecycle governance encompasses data quality
controls, versioning within models, tracking of lineages
and auditability to generate trust and regulatory
compliance. patterns of deployment combine edge
processing responsiveness with cross-fleet learning
cloud analytics, and necessitate coordinated
deployment that takes into account bandwidth, latency,
and privacy limitations. Role based access and
encryption protects operational and IP sensitive data,
and safety cases establish limits to automated
recommendations or actuation. Mature governance
(MoM) speeds up the pilot through enterprise scaling
through repeatability, maintainability, and the rise of the
better of the twin and such predictive services, and wears
on heterogenous and evolving asset portfolios.
G. Decision Support, Optimization, and Maintenance
Orchestration
Intelligent digital twins operationalize knowledge with
decision support that ranks risks, actions and integrates
execution with CMMS, spares and production plans.
Optimization models trade off a risk of failure,
maintenance windows, inventory and throughput to
schedule interventions that minimize lifecycle cost and
disruption. The trade-offs modeled in simulation of what-
if strategies in the twin analyzes the strategies' trade-offs
in the face of uncertainty and thereby develops robust
plans that can be adjusted according to the varying
conditions and constraints. Dashboards and visual
interfaces enhance situational awareness of both the
operators, planners and executives and advice and
alarms fit into the existing workflows to make adoption
easier. Policies are gradually refined over time as self-
learning loops using outcomes, and eventually the
process becomes autonomous creating closed-loop
maintenance where appropriate and safe. Such an
orchestration converts predictive insights into
quantifiable uptime changes, cost, and safety-related
improvements, bridging the analytics and trusted,
reproducible field delivery [14].
H. Industrial Use Cases and Cross-Sector Relevance
In manufacturing, energy, aerospace, critical
infrastructure, digital twin predictive maintenance is
being deployed with reported decreases to unplanned
downtime, increased safety, and long service life.
Watchdog - Manufacturing twins observe machine tools
and production lines to identify abnormalities and
streamline maintenance without affecting takt time and
integrate with MES to coordinate actions. There are
implementations of the energy industry that use twins in
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turbines and substations and plants to predict failures
and performance optimization in varying loads and
environments. Engine and aircraft twins are used
aerospace fleet-level learning and personalised
maintenance plans relative to real usage and degradation
trends. These examples indicate the importance of real-
time monitoring, scenario simulation, and data-based
scheduling in day and night high-stakes complex
operations, which encourages generalized models that
are flexible to domain-specific constraints, regulation,
and safety engineering.

|. Research Gaps and Contributions of an Adaptive

Framework

Nevertheless, in spite of improvements, there are open
challenges of managing nonstationary and scarce
labelled failures, quantification of uncertainty and
scalable governance across heterogeneous assets. The
prevailing surveys and architectures indicate that
adaptive, modular twins are required to co-evolve
through standardized semantics, offer hybrid physics-
ML-modelling and provide explainable decisions that are
safe under condition changes. This study makes artificial
additions such as an adaptive digital twin architecture
that formalizes recalibration activations, incorporates
virtual sensing and physics-informed machine learning,
and entails uncertainty-aware optimization to the
maintenance planning. It further promotes
interoperability via modular sub-twins and decision
pipelines with alighment to enterprise systems and
defines deployment patterns with edge-cloud to real time
responsiveness and fleet learning.  Empirical
assessments emphasized superior fault detectability,
lowering false alarms and optimization of maintenance
timings as critical loopholes of resilience, scalability and
operationalization of predictive maintenance under
dynamic industrial conditions are considered. [15].

Il. LITERATURE REVIEW

Digital twin—-enabled predictive maintenance converges
real-time data, hybrid physics-ML modeling, and
synchronized virtual-physical loops to deliver condition-
aware diagnostics, RUL estimation, and prescriptive
scheduling under operational constraints, outperforming
static thresholding and calendar-based maintenance
through closed-loop synchronization and scenario
testing. Systematic mappings of this field highlight a
methodological pipeline from data ingestion and virtual
modeling to health indicator construction and decision
orchestration, with clear gains in profitability, safety, and
sustainability across manufacturing, energy, and
infrastructure when uncertainty is quantified and
integrated into planning. Reviews consistently stress
interoperability, standardized interfaces, and lifecycle
governance to scale beyond pilots, alongside the need for
virtual sensing and observers to address sparse or noisy
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measurements and improve observability in real time.
LIVE methodologies and capability-level roadmaps
clarify maturation from descriptive to autonomous twins,
emphasizing online adaptation, validation, and the
integration of risk-aware optimization for robust
maintenance timing and resource allocation. Empirical
implementations further show that discrepancy
monitoring between physical units and their twins can
reliably expose degradation trends, while identifying
human-induced confounders that necessitate
governance, explainability, and model management in
production contexts. Sectoral surveys, notably in wind
energy, reinforce the importance of edge-cloud
partitioning, hybrid modeling, and uncertainty-aware
scheduling to handle heterogeneity and nonstationarity
across assets and environments.

Key gaps persist in handling nonstationarity, data
sparsity for labeled failures, secure real-time integration,
and rigorous validation across lifecycle stages,
motivating adaptive twins that self-calibrate via
residuals, drift detection, and context-aware parameter
updates. Physics-informed strategies improve sample
efficiency, stability, and interpretability of prognostics,
reducing false alarms and enhancing generalization
when embedded within streaming DT architectures that
enforce physical feasibility and provide calibrated
uncertainties for decision support. LIVE digital twin
practices operationalize iterative learning and
verification cycles that align sensor placement, model
fidelity, and diagnostic robustness with evolving asset
behavior, enabling progressive capability uplift toward
prescriptive and autonomous maintenance. Industrial
case evidence indicates promising detection
performance over extended evaluation windows, while
also exposing the necessity of standardized data models,
cyber-physical security, and auditability to ensure trust
and safe actuation. Cross-domain umbrella and sectoral
reviews converge on the importance of modular
architectures, role-based access, and edge analytics for
responsiveness, complemented by cloud-scale fleet
learning for transferability across sites and
configurations. Collectively, these insights justify an
adaptive framework that fuses hybrid physics-ML, virtual
sensing, and uncertainty-aware optimization to sustain
reliable prognostics and orchestrate maintenance under
changing regimes at scale.

I1l. PRELIMINARIES

A. STATE-SPACE PROCESS MODEL (DISCRETE-TIME)
X1 = Fie xpe + Gy uye + wy M

X,: State vector attime step k
F: State transition matrix

Gy: Control input matrix

u,: Control/input vector

wy: Process noise vector
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This fundamental model predicts the future internal state
of the assetin the digital twin based on the previous state
and control inputs. It enables real-time simulation of
asset behaviour under operational and environmental
changes, facilitating continuous health tracking and
adaptive prediction.

B. Measurement Model
Z = Hy %3 + vy (2)

zy,: Measurement vector from sensors

H,: Observation matrix

X State vector

V,: Measurement noise
This equation connects sensor readings from the
physical asset to the internal state estimates of the digital
twin. It is critical for reconciling predicted and observed

behaviours, accounting for noise and incomplete
measurements.
C. Kalman Filter Prediction Step
Ripk-1 = Fr—1 Xr—qjk—1 + Gr—1 Uk—1 (3)
Pyje—1 = Fi—1 Pecjie—1 Fieq + Q-1 (4)

Rkjk-1: Predicted state estimate

Py|k—1: Predicted covariance

Qy_1: Process noise covariance matrix
Used in adaptive twins for predictive monitoring, this step
forecasts the next state and its uncertainty before
integrating new sensor data — vital for early fault
detection.

D. Kalman Filter Update Step
-1
Ky = Peje—1 Hi, (Hy Pej—1 Hi + Ry) (5)
i = Xpepe—1 + K (zx — Hy Jek|k—1) (6)

K;: Kalman gain

Ry: Measurement noise covariance

Rk ks Updated state estimate
This update improves the asset’s estimated condition by
optimally blending prediction with actual sensor
measurements, keeping the twin synchronized with
reality.

E. Remaining Useful Life (RUL) Estimation
RUL =ty — t, (7)
ty: Predicted failure time
t.: Current time
A core predictive maintenance metric, RUL estimation
allows the twin to provide actionable insights on when
maintenance should be performed before asset failure.

F. Health Indicator (HI) Calculation
Hlk =1— % = xretl (8)

Ilcfait—Xretll

X.of- Healthy state
X¢qi: Failure state
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This normalized metric quantifies degradation, enabling
adaptive maintenance decisions within the digital twin
framework.

IV. RESULTS AND DISCUSSION
Table 1 - NASA CMAPSS FD0OO1 Dataset Summary.

Metric Value
Units (train/test) 100/100

Sensors (after dropping constants) 14

Operating conditions 1

Max RUL cap 125 cycles

Typical sequence length range ~130-360 cycles

Target Remaining Useful
Life (cycles)

Table 1 describes the key characteristics of the FD001
subset from the NASA CMAPSS turbofan engine
degradation dataset, one of the most widely used
benchmarks in predictive maintenance research. It
consists of sensor measurements from 100 engines in
the training set and 100 in the test set, each operating
under a single fault mode and a single operating
condition. After preprocessing, 14 of the 21 sensor
channels are retained, excluding those with constant or
redundant readings. The target variable is the Remaining
Useful Life (RUL) measured in cycles, with a maximum
cap applied at 125 cycles to avoid overly large prediction
windows. Sequence lengths vary between ~130 and 360
cycles per engine, creating diverse degradation
trajectories. This dataset is particularly useful for
developing and validating adaptive digital twin models
since it provides controlled yet realistic fault progression
under consistent conditions. In the context of the
adaptive framework, FD0O1 allows for the assessment of
anomaly detection, RUL estimation, and uncertainty
quantification methods in a single working regime
scenario, which simplifies baseline testing. The data’s
structure also supports both physics-informed and
purely data-driven modeling approaches, enabling hybrid
experiments. The uniform operational setting makes it an
ideal starting point for comparative evaluation of
modeling techniques before extending to more complex,
multi-condition datasets. The suggested bar chart can
visualise dataset dimensions, such as the number of
units or sensor channels retained, helping stakeholders
grasp dataset scale. Insights from FD001 performance
serve as a benchmark for evaluating the robustness,
generalisation, and adaptivity of proposed digital twin
solutions.

Table 2 - NASA CMAPSS FD0O03 Dataset Summary.
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Metric Value
Units (train/test) 100/100
Sensors (after dropping constants) 14
Operating conditions 1

Max RUL cap 125 cycles

Noted difficulty vs FD001 Higher due to
different fault

dynamics

Target Remaining Useful

Life (cycles)

Table 2 summarises the FD003 subset from the NASA
CMAPSS turbofan dataset, which, like FD0O01, contains
simulated degradation data from 100 training units and
100 testing units, but with a crucial difference: FD003
features a different fault mode while still operating under
a single condition profile. The number of retained sensors
(14) and the RUL cap at 125 cycles are identical to FD0O1,
allowing model performance comparisons between the
datasets without confounding variable differences in
preprocessing. However, FD003’s degradation dynamics
are inherently more complex, leading to increased
prediction difficulty—models that perform well on FD001
often see higher error rates here. This makes FD003 a
critical test case for assessing the adaptability of digital
twin frameworks to changing fault patterns while
maintaining the same environmental stability. The
consistent operational setting (single condition) removes
extraneous variability, meaning differences in model
performance will be predominantly driven by the distinct
degradation signature. For adaptive twins, this dataset
allows the isolation and study of concept drift and
retraining triggers when transitioning between fault
types. The recommended bar chart contrasting FD00O1
and FDO0O03 statistics visually communicates that the
datasets are structurally similar but differ in fault
dynamics—making it easy to justify their joint use in
validation workflows. By using FD003 alongside FD001,
researchers can measure whether an adaptive twin can
accurately generalise across fault classes without
manual reconfiguration, which is essential in real-world
environments where failures may be of different nature
but occur within a similar operating envelope.
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Table 3 - Example Sensor Channels Used.

Index | Sensor channel (canonical CMAPSS IDs)
1 s2 (Total temperature at fan inlet)
2 s3 (Total temperature at LPC outlet)
3 s4 (Total temperature at HPC outlet)
4 s7 (Total pressure at HPC outlet)

5 s8 (Physical fan speed)

6 s9 (Physical core speed)

7 s11 (Bypass ratio)

8 s12 (Bleed enthalpy)

9 s13 (HPT coolant bleed)

10 s14 (LPT coolant bleed)

11 s15 (Burner exit temperature)
12 s17 (Fuel air ratio)

13 s20 (HPT coolant temperature)
14 s21 (LPT coolant temperature)

Table 3 lists the 14 selected sensor channels from the
CMAPSS dataset typically retained for predictive
maintenance modeling after dropping constant or
irrelevant channels. Each sensor corresponds to a
specific physical location or subsystem in the turbofan
engine—for example, s2 measures total temperature at
the fan inlet, s8 captures physical fan speed, and s15
records burner exit temperature. These variables provide
a mix of thermal, pressure, flow, and speed indicators,
giving a comprehensive view of engine health. In adaptive
digital twin frameworks, selecting relevant sensors is
critical for accurate state estimation, virtual sensing, and
RUL prediction. The table functions as a reference
schema, ensuring reproducible feature selection across
experiments. It also aids in interpreting model outputs by
linking sensor IDs to physical meanings. While not
inherently numeric, this mapping supports downstream
feature importance analysis—allowing researchers to
discover which physical aspects contribute most to
degradation detection. For example, pressure at the high-
pressure compressor (HPC) outlet or bypass ratio
changes may strongly correlate with early-stage faults. In
deployment, these channels could inform both model
training and online monitoring strategies, particularly
when sensor health or availability changes. Although the
suggested visualisation is optional, a bar chart of sensor
usage frequency across models or studies could reveal
consensus on sensor relevance. In the context of the
proposed adaptive framework, this sensor list becomes
the foundation upon which virtual models, fusion
algorithms, and hybrid physics—-ML approaches operate,
directly affecting diagnostic coverage and
interpretability.
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Table 4 - XJTU-SY Bearing Dataset Lifetimes (Condition 1).

Operating Bearing Lifetime | Failure Location
Condition

35Hz/12kN Bearing1 2h3min Outer race
35Hz/12kN Bearing2 2h41min Outer race
35Hz/12kN Bearing3 2h38min Outer race
35Hz/12kN Bearing4d 2h2min Cage

Table 4 presents part of the XJTU-SY bearing accelerated
life testing dataset, specifically the Condition1
configuration (operating speed: 35Hz; radial load:
12kN). Five bearings are tested under identical
controlled conditions, and their total lifetimes—from
start until detectable failure—are recorded alongside the
fault location. Reported lifetimes vary significantly: from
as short as 52 minutes (outer+inner race failure) to over
2 hours 41 minutes (outer race). Such variation under
constant operating stress illustrates the challenge of
building accurate degradation models without adaptive
mechanisms—despite identical inputs, physical units
age at different rates due to microstructural differences,
lubrication variation, or manufacturing tolerances. The
inclusion of fault location (outer race, cage, outer+inner)
allows for targeted failure mode classification within the
digital twin. This data is important for testing predictive
maintenance frameworks in high-speed rotating
machinery, where fault onset may occur suddenly. In the
adaptive twin context, these results help validate
anomaly detection triggers and remaining useful life
estimates for discrete components rather than
integrated systems. The suggested bar chart plotting
lifetimes (converted to minutes) grouped by fault location
can immediately communicate variability across units,
highlighting the necessity for real-time asset-specific
adaptation rather than relying solely on fleet averages.
Additionally, by comparing lifetimes with vibration
pattern changes in collected raw signals, researchers
could evaluate how early the twin can detect each type of
raceway or cage degradation, and whether some fault
types remain inherently more predictable under given
load-speed conditions.
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Fig 1 — XJTU-SY Bearing Dataset Lifetimes (Condition 1).

Table 5 — XJTU-SY Bearing Dataset Lifetimes (Condition 2).

Operating Bearing Lifetime Failure

Condition Location
37.5Hz/11kN Bearingé | 8h11min Inner race
37.5Hz/11kN Bearing7 | 2h41min Outerrace
37.5Hz/11kN Bearing8 | 8h53min Cage
37.5Hz/11kN Bearing9 42min Outer race
37.5Hz/11kN Bearing10 | 5h39min Outerrace

Table 5 focuses on the Condition 2 subset of the XJTU-SY
bearing dataset, with an operating speed of 37.5 Hz and
radial load of 11 kN—a slightly altered mechanical stress
profile from Condition 1. The performance and time-to-
failure of five test bearings under this regime are listed
alongside failure locations. Lifetimes vary sharply,
ranging from a short-lived 42 minutes (outer race failure)
to nearly 9 hours (cage failure), illustrating increased
endurance for some units at reduced load despite higher
speed. Fault locations include the inner race, outer race,
and cage, showing that even subtle operational changes
shift both the type and onset time of failures. This dataset
portion is valuable for evaluating how adaptive twins
recalibrate prognosis models when operating conditions
shift even slightly, affecting degradation rates and
dominant failure modes. The substantial differences in
lifespan across units under the same test setup highlight
the influence of material microdefects, installation
conditions, and lubrication on degradation behaviour.
The suggested visualisation—a bar chart of lifetime by
bearing, colour-coded by failure type—clearly shows
clustering of lifespans by fault type, enabling quick
comparative insight. From a digital twin perspective,
these differences would drive the implementation of
condition-specific virtual submodels or weighting
adjustments in hybrid physics—-ML algorithms. When
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combined with sensor signal analysis (vibration
amplitude, statistical features, etc.), the Condition 2
results help define thresholds and drift detection
methods to ensure that predictive maintenance
recommendations remain accurate when seemingly
minor parameter changes occur in actual industrial
settings.

Count of Bearing by Failure
Location

3.5
2.5
1.5

[
. B
0

Cage[60]

Inner race[60]

Outer race[60]

Fig 2 - XJTU-SY Bearing Dataset Lifetimes (Condition 2).

V. CONCLUSION

The study titled “Startups and Sustainability: Exploring
Public Awareness in Coimbatore Regarding the Role of
Startups in Achieving the SDGs” reveals critical insights
into the intersection of entrepreneurial innovation and
sustainable development. The findings indicate that
while there is moderate public awareness of the
Sustainable Development Goals (SDGs), there remains a
substantial gap in knowledge about how startups
contribute to these goals. Younger demographics,
particularly those between 18 and 35, exhibit greater
awareness and support for sustainability initiatives,
suggesting a favorable outlook for youth-driven
entrepreneurial ecosystems. The public perceives
startups as impactful agents in addressing sustainability
challenges, especially when they adopt practices like
waste recycling, green packaging, renewable energy use,
and ethical sourcing. However, the research also
highlights the need for increased Vvisibility and
communication of startup-led sustainability efforts. A
significant number of respondents are unaware of
specific startups contributing to SDGs, indicating a lack
of outreach or public engagement from these ventures.
From a strategic standpoint, startups in Coimbatore
must prioritize not only sustainable operations but also
transparent communication and community
involvement. Bridging the awareness gap through
education, policy support, and digital storytelling is
essential for building a more inclusive and participatory
environment. Startups that align their missions with
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specific SDGs, report measurable impacts, and engage
meaningfully with their communities will likely gain more
trust, investment, and social capital.This research
underscores the transformative potential of startups in
achieving the SDGs at a local level. By leveraging their
agility, innovation, and purpose-driven models, startups
can act as catalysts for sustainable urban development.
A combination of informed public participation,
supportive policy frameworks, and robust
entrepreneurial ecosystems is vital t maximize this
potential. Ultimately, fostering sustainability-focused
startups is not just an economic imperative but a
pathway toward a more equitable and environmentally
conscious future for cities like Coimbatore.
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